248 resultados para Shaft sinking.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow-sinking particles were sampled using the Marine Snow Catcher (MSC). For a full description of the MSC and flux calculations see Riley et al. (2012). The MSC was deployed at four depths between 50 - 650 m during four visit at Stations 1 (63°3' N 11°0' W) and three visits at Station 2 (62°5' N 2°3' W) to obtain depth profiles of slow-sinking material. The MSC was further deployed at 50 m during two visits at Station 3 (60°2' N 1°0' E). A total of 33 MSC were deployed. Slow-sinking particles were analysed for particulate organic carbon (POC), particulate inorganic carbon (PIC), biogenic silica (BSi), and Chlorophyll a (total, >10 µm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes-remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sinking of gelatinous zooplankton biomass is an important component of the biological pump removing carbon from the upper ocean. The export efficiency, e.g., how much biomass reaches the ocean interior sequestering carbon, is poorly known because of the absence of reliable sinking speed data. We measured sinking rates of gelatinous particulate organic matter (jelly-POM) from different species of scyphozoans, ctenophores, thaliaceans, and pteropods, both in the field and in the laboratory in vertical columns filled with seawater using high-quality video. Using these data, we determined taxon-specific jelly-POM export efficiencies using equations that integrate biomass decay rate, seawater temperature, and sinking speed. Two depth scenarios in several environments were considered, with jelly-POM sinking from 200 and 600 m in temperate, tropical, and polar regions. Jelly-POM sank on average between 850 and 1500 m/d (salps: 800-1200 m/d; ctenophores: 1200-1500 m/d; scyphozoans: 1000-1100 m d; pyrosomes: 1300 m/d). High latitudes represent a fast-sinking and low-remineralization corridor, regardless of species. In tropical and temperate regions, significant decomposition takes place above 1500 m unless jelly-POM sinks below the permanent thermocline. Sinking jelly-POM sequesters carbon to the deep ocean faster than anticipated, and should be incorporated into biogeochemical and modeling studies to provide more realistic quantification of export via the biological carbon pump worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sinking organic particles were collected from the Porcupine Abyssal Plain in 2013. Collection was done using a marine snow catcher (MSC), which is essentially a large (95 L) settling column. The marine snow catcher is deployed to one depth, the water trapped inside and then brought to the surface and left to stand on deck for 2 hours during which time the particles settle down (or up) the MSC depending on their settling rate. The particles are then collected and due to position of collection from the snow catcher are determined as fast or slow sinking particles. Some fluxes are negative as they were positively buoyant and not sinking.