927 resultados para Sea-floor spreading.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling at site 207 (DSDP Leg 21), located on the broad summit of the Lord Howe Rise, bottomed in rhyolitic rocks. Sanidine concentrates from four samples of the rhyolite were dated by the 40Ar/39Ar total fusion method and conventional K-Ar method, and yielded concordant ages of 93.7 +/- 1.1 my, equivalent to the early part of the Upper Cretaceous. At this time the Lord Howe Rise, which has continental-type structure, is thought to have been emergent and adjacent to the eastern margin of the Australian-antarctic continent. Subsequent to 94 my ago and prior to deposition of Maastrichtian (70-65 myBP) marine sediments on top of the rhyolitic basement of the Lord Howe Rise, rifting occurred and the formation of the Tasman Basin began by sea-floor spreading with rotation of the Rise away from the margin of Australia. Subsidence of the Rise continued until Early Eocene (about 50 myBP), probably marking the end of sea-floor spreading in the Tasman Basin. These large scale movements relate to the breakup of this part of Gondwanaland in the Upper Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is devoted to a marine geophysical-geological research in the West Antarctic. This researche contributed to establishing the base geodesic network of the West Antarctic and supplemented geokinematic monitoring based on this network with geophysical and geologic information on structure and features of geomorphological and tectonic development of the South Ocean floor. Collected materials allow to conclude about the inhomogeneity of the Scotia Sea floor and about combination of fragments of a continental massif with young rift structures in conditions of the upwelling mantle. The ancient continental bridge, faunal connections between the South America and the West Antarctic has been destroyed by processes of destruction, taphrogeny and sea floor spreading. Structures of the Scotia and Caribbean Seas, North Fiji and Arctic Basins are similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts (Schilling, 1973, doi:10.1038/242565a0; Verma et al., 1983, doi:10.1038/306654a0; Ito and Lin, 1995, doi:10.1130/0091-7613(1995)023<0657:OSCHIC>2.3.CO;2; Müller et al., 1998, doi:10.1038/24850). The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected (Ito and Lin, 1995, doi:10.1130/0091-7613(1995)023<0657:OSCHIC>2.3.CO;2; White et al., 1993, doi:10.1029/93JB02018; Kincaid et al., 1995, doi:10.1038/376758a0; Kingsley and Schilling, 1998, doi:10.1029/98JB01496 ). Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51° N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions (Mammerickx and Sharman, 1988, doi:10.1029/JB093iB04p03009) that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87Sr/86Sr that had been given in summary form by W.H. Burke co-workers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87Sr/86Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. These samples are characterized by a wide variety of diagenetic and burial histories. The large size and cosmopolitan nature of the data set decreases the likelihood that, among coeval data, systematic error has been introduced by a similar pattern of diagenetic alteration of the ratios. There is good clustering of data points throughout the Cenozoic and Cretaceous curve. The consistency of data is illustrated by Cenozoic and Cretaceous data plots that include a separate symbol for each DSDP site and non-DSDP sample location. More than 98% of the data points are enclosed by upper and lower lines that define a narrow band. For any given time, the correct seawater ratio probably lies within this band. A line drawn within the band represents our estimate of the actual seawater ratio as a function of time. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87Sr/86Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleooceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87Sr/86Sr can complicate a direct platetectonic interpretation for portions of the seawater curve.