105 resultados para Scale of productions
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.
Resumo:
The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.
Resumo:
The evolution of the Southern Ocean climate during the late Eocene-late Oligocene interval is examined through highresolution, quantitative calcareous nannofossil analyses on samples from the Southern Ocean sections on Maud Rise and Kerguelen Plateau. We determined the abundance patterns of the counted species to clarify the biostratigraphy, which we correlated with high-resolution magnetostratigraphy [Roberts, A.P., Bicknell, S.J., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003a. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program Sites 744 and 748). In: Florindo, F., Cooper, A.K., O'Brien, P.A. (Eds.), Antarctic Cenozoic Palaeoenvironments: Geologic Record and Models. Palaeogeogr., Palaeoclimatol., Palaeoecol. 198 145-168; Florindo, F., Roberts, A.P., in press. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull.], and used this data to interpret paleoceanographic changes through the late Eocene to late Oligocene. Percentage plots of the individual species, compared with R-mode principal component and cluster analysis results, allowed us to divide the assemblages into three groups: temperate-water taxa, cool-water taxa, and no temperature-affinity taxa. We attempt correlations between these paleoecological groups and the major sea-surface temperature (SST) variations with tectonic and paleoceanographic changes in the Southern Ocean. During the late Eocene, the nannofossil assemblage data reveal that there were several minor SST decreases (coolings) from 36 to 34 Ma, before the Eocene/Oligocene (E/O) boundary. A sharp cooling event, dated at 33.54 Ma (earliest Oligocene), occurred about 160 kyr after the E/O boundary, which is dated at 33.7 Ma. Relatively stable, cool conditions are interpreted to persist until the latest Oligocene, when an increase in abundance of temperate-water taxa, which corresponds to an antithetical decrease in abundance of cool-water indicators, is recorded. On the basis of our dating, the opening of the Drake Passage, allowing shallow-water circulation, began by 33.54 Ma at the latest, while the establishment of deep-water connections through the Tasmanian Gateway occurred at 33 Ma, as suggested by Exon et al. [Proc. ODP, Init. Rep. 189 (2001) 1].
Resumo:
The observation by Heinrich (1988) that, during the last glacial period, much of the input of ice-rafted detritus to the North Atlantic sediments may have occurred as a succession of catastrophic events, rekindled interest on the history of the northern ice sheets over the last glacial period. In this paper, we present a rapid method to study the distribution of these events (both in space and time) using whole core low-field magnetic susceptibility. We report on approximately 20 cores covering the last 150 to 250 kyr. Well-defined patterns of ice-rafted detritus appear during periods of large continental ice-sheet extent, although these are not always associated within their maxima. Most of the events may be traced across the North Atlantic Ocean. For the six most recent Heinrich layers (HL), two distinct patterns exist: HL1, HL2, HL4, HL5 are distributed along the northern boundary of the Glacial Polar Front, over most of the North Atlantic between ~40° and 50°N; HL3 is more restricted to the central and eastern part of the northern Atlantic. The Nd-Sr isotopic composition of the material constituting different Heinrich events indicates the different provenance of the two patterns: HL3 has a typical Scandinavia-Arctic-Icelandic 'young crust' signature, and the others have a large component of northern Quebec and northern West Greenland 'old crust' material. These isotopic results, obtained on core SU-9008 from the North American basin, are in agreement with the study by Jantschik and Huon (1992), who used K-Ar dating of silt- and clay-size fractions of an eastern basin core (ME-68-89). These data confirm the large spatial scale of these events, and the enormous amount of ice-rafted detritus they represent.
Resumo:
We present a synthesis of some 20,504 mineral analyses of ~500 Hole 735B gabbros, including 10,236 new analyses conducted for this paper. These are used to construct a mineral stratigraphy for 1.5-km-deep Hole 735B, the only long section of the lower crust drilled in situ in the oceans. At long wavelengths, generally >200 m, there is a good chemical correlation among the principal silicate phases, consistent with the in situ crystallization of three or four distinct olivine gabbro bodies, representing at least two major cycles of intrusion. Initial cooling and crystallization of these bodies must have been fairly rapid to form a crystal mush, followed by subsequent compaction and migration of late iron-titanium-rich liquids into shear zones and fractures through which they were emplaced to higher levels in the lower crust where they crystallized and reacted with the olivine gabbro host rock to form a wide variety of ferrogabbros. At the wave lengths of the individual intrusions, as represented by the several olivine gabbro sequences, there is a general upward trend of iron and sodium enrichment but a poor correlation between the compositions of the major silicate phases. This, together with a wide range in minor incompatible and compatible element concentrations in olivine and pyroxene at a given Mg#, is consistent with widespread permeable flow of late melt through these intrusions, in contrast to what has been documented for a 600-m section of reputedly fast-spreading ocean crust in the Oman Ophiolite. This unexpected finding could be related to enhanced compaction and deformation-controlled late-stage melt migration at the scale of intrusion at a slow-spreading ocean ridge, compared to the relatively static environment in the lower crust at fast-spreading ridges.
Resumo:
The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.
Resumo:
At Ocean Drilling Program (ODP) Site 1090 (subantarctic South Atlantic), benthic foraminiferal stable isotope data (from Cibicidoides and Oridorsalis) span the late Oligocene through early Miocene (~24-16 Ma) at a temporal resolution of ~5 ky. Over the same interval, a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity time scale (GPTS), thereby providing direct correlation of the isotope record to the GPTS. In an initial age model, we use the newly derived age of the Oligocene/Miocene (O/M) boundary of 23.0 Ma of Shackleton et al. (2000, doi:10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2), revised to the new astronomical calculation (La2003) of Laskar et al (2004, doi:10.1016/j.icarus.2004.04.005) to recalculate the spline ages of Cande and Kent (1995, doi:10.1029/94JB03098). We then tune the Site 1090 dekta18O record to obliquity using La2003. In this manner, we are able to refine the ages of polarity chrons C7n through C5Cn.1n. The new age model is consistent, within one obliquity cycle, with previously tuned ages for polarity chrons C7n through C6Bn from Shackleton et al. (2000) when rescaled to La2003. The results from Site 1090 provide independent evidence for the revised age of the Oligocene/Miocene boundary of 23.0 Ma. For early Miocene polarity chrons C6AAr through C5Cn, our obliquity-scale age model is the first to allow a direct calibration to the GPTS. The new ages are generally within one obliquity cycle of those obtained by rescaling the Cande and Kent (1995) interpolation using the new age of the O/M boundary (23.0 Ma) and the same middle Miocene control point (14.8 Ma) used by Cande and Kent (1995).
Resumo:
The sediments recovered during Leg 138 provide a remarkable opportunity to improve the geological time scale of the late Neogene. We have developed new time scales in the following steps. First, we constructed age models on the basis of shipboard magnetostratigraphy and biostratigraphy, using the time scale of Berggren, Kent, and Flynn (1985). Second, we refined these age models using shipboard GRAPE density measurements to provide more accurate correlation points. Third, we calibrated a time scale for the past 6 m.y. by matching the high-frequency GRAPE density variations to the orbital insolation record of Berger and Loutre (1991); we also took into account d18O records, where they were available. Fourth, we generated a new seafloor anomaly time scale using our astronomical calibration of C3A.n (t) at 5.875 Ma and an age of 9.639 Ma for C5n.1n (t) that is based on a new radiometric calibration (Baksi, 1992). Fifth, we recalibrated the records older than 6 Ma to this new scale. Finally, we reconsidered the 6- to 10-Ma interval and found that this could also be partially tuned astronomically.
Resumo:
Oxide-free olivine gabbro and gabbro, and oxide olivine gabbro and gabbro make up the bulk of the gabbroic suite recovered from Ocean Drilling Program (ODP) Leg 179 Hole 1105A, which lies 1.2 km away from Hole 735B on the eastern transverse ridge of the Atlantis II Fracture Zone, Southwest Indian Ridge. The rocks recovered during Leg 179 show striking similarities to rocks recovered from the uppermost 500 m of Hole 735B during ODP Leg 118. The rocks of the Atlantis platform were likely unroofed as part of the footwall block of a large detachment fault on the inside corner of the intersection of the Southwest Indian Ridge and the Atlantis II Transform at ~11.5 Ma. We analyzed the lithologic, geochemical, and structural stratigraphy of the section. Downhole lithologic variation allowed division of the core into 141 lithologic intervals and 4 main units subdivided on the basis of predominance of oxide gabbroic vs. oxide-free gabbroic rocks. Detailed analyses of whole-rock chemistry, mineral chemistry, microstructure, and modes of 147 samples are presented and clearly show that the gabbroic rocks are of cumulate origin. These studies also indicate that geochemistry results correlate well with downhole magnetic susceptibility and Formation MicroScanner (FMS) resistivity measurements and images. FMS images show rocks with a well-layered structure and significant numbers of mappable layer contacts or compositional contrasts. Downhole cryptic mineral and whole-rock chemical variations depict both "normal" and inverse fine-scale variations on a scale of 10 m to <2 m with significant compositional variation over a short distance within the 143-m section sampled. A Mg# shift in whole-rock or Fo contents of olivine of as much as 20-30 units over a few meters of section is not atypical of the extreme variation in downhole plots. The products of the earliest stages of basaltic differentiation are not represented by any cumulates, as the maximum Fo content was Fo78. Similarly, the extent of fractionation represented by the gabbroic rocks and scarce granophyres in the section is much greater than that represented in the Atlantis II basalts. The abundance of oxide gabbros is similar to that in Hole 735B, Unit IV, which is tentatively correlated as a similar unit or facies with the oxide gabbroic units of Hole 1105A. Oxide phases are generally present in the most fractionated gabbroic rocks and lacking in more primitive gabbroic rocks, and there is a definite progression of oxide abundance as, for example, the Mg# of clinopyroxene falls below 73-75. Coprecipitation of oxide at such early Mg#s cannot be modeled by perfect fractional crystallization. In situ boundary layer fractionation may offer a more plausible explanation for the complex juxtaposition of oxide- and nonoxide-bearing more primitive gabbroic rocks. The geochemical signal may, in part, be disrupted by the presence of mylonitic shear zones, which strike east-west and dip both to the south and north, but predominantly to the south away from the northern rift valley where they formed. Downhole deformation textures indicate increasing average strain and crystal-plastic deformation in units that contain oxides. Oxide-rich zones may represent zones of rheologic weakness in the cumulate section along which mylonitic and foliated gabbroic shear zones nucleate in the solid state at high temperature, or the oxide may be a symptom of former melt-rich zones and hypersolidus flow, as predicted during study of Hole 735B.
Resumo:
Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.
Resumo:
In February of 1983 a new terrestrial photogrammetric survey of Lewis Glacier (0° 9' S) has been made, from which the present topographic map has been produced in a scale of 1:5000. Simultaneously a survey of 1963 was evaluated giving a basis for computations of area and volume changes over the 20 year period: Lewis Glacier has lost 22 % of its area and 50 % of its volume. Based on maps and field observations of moraines 10 different stages were identified. Changes of area and volume can be determined for the periods after 1890, two older, undated stages are presumed to be of Little Ice Age-origin. Moderate losses from 1890 to 1920 were followed by strong, uninterrupted retreat up to present. In this respect Lewis Glacier behaves as all other equatorial glaciers that were closer examined. Compared to alpine glaciers the development was similar up to 1950. In the following years, however, the glaciers of the Alps gained mass and advanced while Lewis Glacier experienced its strongest losses from 1974 to 1983.
Resumo:
In a continuation of Richard Finsterwalder's work of 1950 eight selected glaciers in the Eastern Alps haye been photogrammetrically surveyed and mapped on a scale of 1: 10,000 in the years 1959 and 1969 in order to establish arecord of glacier variation. From a comparison of isohypses of the 1950, 1959 and 1969 surveys the height changes of the glacier surfaces have been determined for approximately two decades. This yielded an average raise of 0,1 m per year, while an average sinking of glacier surfaces of 0.6 m per year had been found for the period 1920-1950.
Resumo:
Stubacher Sonnblickkees (SSK) is located in the Hohe Tauern Range (Eastern Alps) in the south of Salzburg Province (Austria) in the region of Oberpinzgau in the upper Stubach Valley. The glacier is situated at the main Alpine crest and faces east, starting at elevations close to 3050 m and in the 1980s terminated at 2500 m a.s.l. It had an area of 1.7 km² at that time, compared with 1 km² in 2013. The glacier type can be classified as a slope glacier, i.e. the relief is covered by a relatively thin ice sheet and there is no regular glacier tongue. The rough subglacial topography makes for a complex shape in the surface topography, with various concave and convex patterns. The main reason for selecting this glacier for mass balance observations (as early as 1963) was to verify on a complex glacier how the mass balance methods and the conclusions - derived during the more or less pioneer phase of glaciological investigations in the 1950s and 1960s - could be applied to the SSK glacier. The decision was influenced by the fact that close to the SSK there was the Rudolfshütte, a hostel of the Austrian Alpine Club (OeAV), newly constructed in the 1950s to replace the old hut dating from 1874. The new Alpenhotel Rudolfshütte, which was run by the Slupetzky family from 1958 to 1970, was the base station for the long-term observation; the cable car to Rudolfshütte, operated by the Austrian Federal Railways (ÖBB), was a logistic advantage. Another factor for choosing SSK as a glaciological research site was the availability of discharge records of the catchment area from the Austrian Federal Railways who had turned the nearby lake Weißsee ('White Lake') - a former natural lake - into a reservoir for their hydroelectric power plants. In terms of regional climatic differences between the Central Alps in Tyrol and those of the Hohe Tauern, the latter experienced significantly higher precipitation , so one could expect new insights in the different response of the two glaciers SSK and Hintereisferner (Ötztal Alps) - where a mass balance series went back to 1952. In 1966 another mass balance series with an additional focus on runoff recordings was initiated at Vernagtfener, near Hintereisferner, by the Commission of the Bavarian Academy of Sciences in Munich. The usual and necessary link to climate and climate change was given by a newly founded weather station (by Heinz and Werner Slupetzky) at the Rudolfshütte in 1961, which ran until 1967. Along with an extension and enlargement to the so-called Alpine Center Rudolfshütte of the OeAV, a climate observatory (suggested by Heinz Slupetzky) has been operating without interruption since 1980 under the responsibility of ZAMG and the Hydrological Service of Salzburg, providing long-term met observations. The weather station is supported by the Berghotel Rudolfshütte (in 2004 the OeAV sold the hotel to a private owner) with accommodation and facilities. Direct yearly mass balance measurements were started in 1963, first for 3 years as part of a thesis project. In 1965 the project was incorporated into the Austrian glacier measurement sites within the International Hydrological Decade (IHD) 1965 - 1974 and was afterwards extended via the International Hydrological Program (IHP) 1975 - 1981. During both periods the main financial support came from the Hydrological Survey of Austria. After 1981 funds were provided by the Hydrological Service of the Federal Government of Salzburg. The research was conducted from 1965 onwards by Heinz Slupetzky from the (former) Department of Geography of the University of Salzburg. These activities received better recognition when the High Alpine Research Station of the University of Salzburg was founded in 1982 and brought in additional funding from the University. With recent changes concerning Rudolfshütte, however, it became unfeasible to keep the research station going. Fortunately, at least the weather station at Rudolfshütte is still operating. In the pioneer years of the mass balance recordings at SSK, the main goal was to understand the influence of the complicated topography on the ablation and accumulation processes. With frequent strong southerly winds (foehn) on the one hand, and precipitation coming in with storms from the north to northwest, the snow drift is an important factor on the undulating glacier surface. This results in less snow cover in convex zones and in more or a maximum accumulation in concave or flat areas. As a consequence of the accentuated topography, certain characteristic ablation and accumulation patterns can be observed during the summer season every year, which have been regularly observed for many decades . The process of snow depletion (Ausaperung) runs through a series of stages (described by the AAR) every year. The sequence of stages until the end of the ablation season depends on the weather conditions in a balance year. One needs a strong negative mass balance year at the beginning of glacier measurements to find out the regularities; 1965, the second year of observation resulted in a very positive mass balance with very little ablation but heavy accumulation. To date it is the year with the absolute maximum positive balance in the entire mass balance series since 1959, probably since 1950. The highly complex ablation patterns required a high number of ablation stakes at the beginning of the research and it took several years to develop a clearer idea of the necessary density of measurement points to ensure high accuracy. A great number of snow pits and probing profiles (and additional measurements at crevasses) were necessary to map the accumulation area/patterns. Mapping the snow depletion, especially at the end of the ablation season, which coincides with the equilibrium line, is one of the main basic data for drawing contour lines of mass balance and to calculate the total mass balance (on a regular-shaped valley glacier there might be an equilibrium line following a contour line of elevation separating the accumulation area and the ablation area, but not at SSK). - An example: in 1969/70, 54 ablation stakes and 22 snow pits were used on the 1.77 km² glacier surface. In the course of the study the consistency of the accumulation and ablation patterns could be used to reduce the number of measurement points. - At the SSK the stratigraphic system, i.e. the natural balance year, is used instead the usual hydrological year. From 1964 to 1981, the yearly mass balance was calculated by direct measurements. Based on these records of 17 years, a regression analysis between the specific net mass balance and the ratio of ablation area to total area (AAR) has been used since then. The basic requirement was mapping the maximum snow depletion at the end of each balance year. There was the advantage of Heinz Slupetzky's detailed local and long-term experience, which ensured homogeneity of the series on individual influences of the mass balance calculations. Verifications took place as often as possible by means of independent geodetic methods, i.e. monoplotting , aerial and terrestrial photogrammetry, more recently also the application of PHOTOMODELLER and laser scans. The semi-direct mass balance determinations used at SSK were tentatively compared with data from periods of mass/volume change, resulting in promising first results on the reliability of the method. In recent years re-analyses of the mass balance series have been conducted by the World Glacier Monitoring Service and will be done at SSK too. - The methods developed at SSK also add to another objective, much discussed in the 1960s within the community, namely to achieve time- and labour-saving methods to ensure continuation of long-term mass balance series. The regression relations were used to extrapolate the mass balance series back to 1959, the maximum depletion could be reconstructed by means of photographs for those years. R. Günther (1982) calculated the mass balance series of SSK back to 1950 by analysing the correlation between meteorological data and the mass balance; he found a high statistical relation between measured and determined mass balance figures for SSK. In spite of the complex glacier topography, interesting empirical experiences were gained from the mass balance data sets, giving a better understanding of the characteristics of the glacier type, mass balance and mass exchange. It turned out that there are distinct relations between the specific net balance, net accumulation (defined as Bc/S) and net ablation (Ba/S) to the AAR, resulting in characteristic so-called 'turnover curves'. The diagram of SSK represents the type of a glacier without a glacier tongue. Between 1964 and 1966, a basic method was developed, starting from the idea that instead of measuring years to cover the range between extreme positive and extreme negative yearly balances one could record the AAR/snow depletion/Ausaperung during one or two summers. The new method was applied on Cathedral Massif Glacier, a cirque glacier with the same area as the Stubacher Sonnblickkees, in British Columbia, Canada. during the summers of 1977 and 1978. It returned exactly the expected relations, e.g. mass turnover curves, as found on SSK. The SSK was mapped several times on a scale of 1:5000 to 1:10000. Length variations have been measured since 1960 within the OeAV glacier length measurement programme. Between 1965 and 1981, there was a mass gain of 10 million cubic metres. With a time lag of 10 years, this resulted in an advance until the mid-1980s. Since 1982 there has been a distinct mass loss of 35 million cubic metres by 2013. In recent years, the glacier has disintegrated faster, forced by the formation of a periglacial lake at the glacier terminus and also by the outcrops of rocks (typical for the slope glacier type), which have accelerated the meltdown. The formation of this lake is well documented. The glacier has retreated by some 600 m since 1981. - Since August 2002, a runoff gauge installed by the Hydrographical Service of Salzburg has recorded the discharge of the main part of SSK at the outlet of the new Unterer Eisboden See. The annual reports - submitted from 1982 on as a contractual obligation to the Hydrological Service of Salzburg - document the ongoing processes on the one hand, and emphasize the mass balance of SSK and outline the climatological reasons, mainly based on the met-data of the observatory Rudolfshütte, on the other. There is an additional focus on estimating the annual water balance in the catchment area of the lake. There are certain preconditions for the water balance equation in the area. Runoff is recorded by the ÖBB power stations, the mass balance of the now approx. 20% glaciated area (mainly the Sonnblickkees) is measured andthe change of the snow and firn patches/the water content is estimated as well as possible. (Nowadays laserscanning and ground radar are available to measure the snow pack). There is a net of three precipitation gauges plus the recordings at Rudolfshütte. The evaporation is of minor importance. The long-term annual mean runoff depth in the catchment area is around 3.000 mm/year. The precipitation gauges have measured deficits between 10% and 35%, on average probably 25% to 30%. That means that the real precipitation in the catchment area Weißsee (at elevations between 2,250 and 3,000 m) is in an order of 3,200 to 3,400 mm a year. The mass balance record of SSK was the first one established in the Hohe Tauern region (and now since the Hohe Tauern National Park was founded in 1983 in Salzburg) and is one of the longest measurement series worldwide. Great efforts are under way to continue the series, to safeguard against interruption and to guarantee a long-term monitoring of the mass balance and volume change of SSK (until the glacier is completely gone, which seems to be realistic in the near future as a result of the ongoing global warming). Heinz Slupetzky, March 2014