99 resultados para Scale 1:150,000None


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isotope-geochronological study of Neogene-Quaternary igneous rocks from the Urup Island (Greater Kuril Ridge) was carried out. It was established that magmatic activity in the island developed during the last 10 my and it was not interrupted by long inactive periods. K-Ar data obtained along with results of diatomic analysis are in good agreement with the regional stratigraphic scheme of Paleogene and Neogene deposits and the intraregional correlation scheme of magmatic rocks in the Kuril Islands, which are developed for the State Geologic Map, scale 1:200 000 (Second edition). In the present-day territory of the Urup Island, the earliest Late Miocene - Early Pliocene (10.5-4.5 Ma) magmatic stage was associated with formation of the Rybakovsky andesite volcanic complex, which is represented by an effusive series (Rybakovskaya Suite) and subvolcanic rocks. Actually at the same time (6.6-4.7 Ma), but at a great depth, intrusive bodies of the Prasolovsky plagiogranite-diorite plutonic complex were intruded. The Pliocene stage of magmatism in the Urup Island is characterized by formation of rocks of the Kamuysky dacitic volcanic complex (4.0-2.1 Ma). This complex is locally represented only by subvolcanic acidic bodies, and its occurrence in the island is limited. During the Pliocene - Early Neopleistocene stage of magmatism (3.0-0.8 Ma) the Fregatsky andesibasalt volcanic complex was formed in the Urup Island. This complex includes effusive series (Fregatskaya unit) and subvolcanic bodies. Quaternary time in the Urup Island is characterized by eruptive activity in subaerial conditions with formation of effusive-pyroclastic intermediate-basic rocks of the Bogatyrsky Middle Neopleistocene - Holocene complex (<0.5 Ma). Rocks of this complex formed stratovolcano cones. Pyroclastic rocks of the Rokovsky dacitic volcanic complex were erupted simultaneously. The mentioned magmatic complexes of the Urup Island well correlate with the distinguished magmatic complexes within the bounds of contiguous insular blocks of the Greater Kuril Arc and confirm uniform geologic history of magmatic development of the region.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Vernagtferner in the Ötztaler Alps (Tirol) has been mapped after terrestrial-photogrammetric surveying by Sebastian Finsterwalder in 1889, Otto von Gruber in 1912, and Heinrich Schatz in 1938. The new, four-colored map in the scale 1: 10.000 enclosed in this issue was composed from aerial photographs of 1969. It was conceived as topographicaI map with additional geodetic and glaciological content. The methods of survey are explained and the means of cartographic representation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems resulting from mapping of glaciers with traditional techniques motivated Sebastian Finsterwalder to apply the planetable-photogrammetry to a survey of Vernagt- and Guslarferner (Ötztal Alps, Austria) in 1888/ 1889. The result of this photogrammetric survey was the map "Der Vernagt-Ferner im Jahre 1889", which had been published in four colours. This is the first map of an entire glacier in the large scale 1: 10.000 with a high accuracy. Since this remarkable map of Vernagt- and Guslarferner is almost not available a facsimile-reprint had been produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion coupled with warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. The sites are in close proximity, so differences in surface productivity cannot have caused this differential effect. Instead, on the basis of an analysis of climate modelling experiments, we infer that changes in ocean circulation pattern across ETM2 may have resulted in more pronounced warming at intermediate depths (Site 1263). The effects of more pronounced warming include increased metabolic rates, leading to a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response to more severe benthic disturbance, bioturbation may have decreased at Site 1263 as compared to Site 1262, hence differentially affecting the bulk carbonate record. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk d13C and sharper transition in wt% CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during peak ELMO conditions are needed to account for the observed features. Our combined ecological and modelling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: