201 resultados para SULFIDE INCLUSIONS
(Table 3) Multiple sulfur isotope composition of secondary sulfide in ODP Hole 129-801C and 185-801C
Resumo:
The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake zone are variably graphitic pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached near the unconformity during paleoweathering and/or later fluid interaction, leading to a loss of graphite near the unconformity. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman analysis, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, N2- and CO2-rich fluids circulated. CH4- and N2-rich fluids could be the result of the breakdown of graphite to CH4/CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4+/N2. In the RGZ, highly saline fluids interpreted to be basinally derived have been recorded. The circulation of the two types of fluids (carbonic and brines) occurred at two different distinct events: 1) during the retrograde metamorphism of the basement rocks before the deposition of the Athabasca Basin for the carbonic fluids, and 2) after the deposition of the Athabasca Basin for the brines. Thus, in addition to possibly be related to graphite depletion in the RGZ, the brines can be linked to uranium mineralization.
Resumo:
A felsic volcanic series (605-825 mbsf) overlain by upper Eocene shallow-water sediments (500-605 mbsf) and basalticandesitic sills that intruded into sediments of Holocene to Miocene age (0-500 mbsf) was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The volcanic sequence at Site 841 includes altered and mineralized calc-alkaline rhyolites and dacites, dacitic tuffs, lapilli tuffs, flow breccias, and welded tuffs. These rocks formed subaerially or in a very shallow-water environment suffering a subsidence of >5000 m since Eocene times. Calculations of gains and losses of the major components during alteration show most pronounced changes in the uppermost 70 m of the volcanic sequence. Here, Al, Fe, Mg, and K are enriched, whereas Si and Na are strongly depleted. Illite, vermiculite, chlorite, and hematite predominate in this part of the hole. Throughout the section, quartz, plagioclase, kaolinite, and calcite are present. Sulfide mineralization (up to 10 vol%) consisting mainly of disseminated pyrite (with minor pyrrhotite inclusions) and marcasite together with minor amounts of chalcopyrite is pervasive throughout. Locally, a few sulfide-bearing quartz-carbonate veins as well as Ti-amphibole replacement by rutile and then by pyrite were observed. Strong variations in the As content of sulfides (from 0 to 0.69 wt%) from the same depth interval and local enrichments of Co, Ni, and Cu in pyrite are interpreted to result from fluctuations in fluid composition. Calculations of oxygen and sulfur fugacities indicate that fO2 and fS2 were high at the top and lower at the bottom of the sequence. Sulfur isotope determinations on separated pyrite grains from two samples give d34S values of +6.4ë and +8.4ë, which are close to those reported from Kuroko and Okinawa Trough massive sulfide deposits and calc-alkaline volcanic rocks of the Japanese Ryukyu Island Arc. Calculated chlorite formation temperatures of 265°-290°C at the top of the sequence are consistent with minimum formation temperatures of fluid inclusions in secondary quartz, revealing a narrow range of 270°-297°C. Chlorite formation temperatures are constant downhole and do not exceed 300°C. The presence of marcasite and 4C-type pyrrhotite indicates a formation temperature of <= 250°C. At a later stage, illite was formed at the top of the volcanic series at temperatures well below 200°C.
(Table 4) Chemical composition of plagioclase and glass inclusions in ODP Sample 126-792E-74R-1,9-13
Resumo:
Porewater concentrations of sulfate, methane, and other relevant constituents were determined on four sediment cores from the high productivity upwelling area off Namibia which were recovered from the continental slope at water depths of 1300 and 2000 m. At all four stations a distinct sulfate-methane transition zone was observed several meters below the seafloor in which both sulfate and methane are consumed. Nutrient porewater concentration profiles do not show gradient slope changes at the depths of the transition zones. Flux calculations carried out on the basis of the determined porewater profiles revealed that anaerobic methane oxidation accounts for 100% of deep sulfate reduction within the sulfate-methane transition zone and consumes the total net diffusive sulfate flux. A significant contribution of organic carbon oxidation to the reduction of sulfate at these depths could, therefore, be excluded. We state that porewater profiles of sulfate with constant gradients above the transition zones are indicative for anaerobic methane oxidation controlling sulfate reduction.
Resumo:
Features of spatial variability of hydrogen sulfide in the northeastern part of the Black Sea are estimated. Some technical aspects of H2S concentration determination in the anoxic zone are discussed: in its upper part at H2S concentration <30 µmol/l, the photometric method is recommended, while for deeper layers the iodometric method should be used. With linearity of vertical distribution of hydrogen sulfide and ammonium taken into account their vertical gradients are estimated as 0.49+/-0.04 µmol/m and 0.19+/-0.06 µmol/m respectively. It is shown that the upper boundary of the H2S layer corresponds to the isopycnal surface with Sigma_t = 16.19+/-0.05 arbitrary units. Special attention is paid to relationship of hydrogen sulfide distribution with hydrophysical features in the region under study, in particular in the coastal zone. It is shown that hydrodynamic conditions control spatial distribution of hydrogen sulfide. On the basis of isopycnal treatment of the H2S field existence of a coastal convergence zone is proved, and peculiarities are recognized of vertical circulation in the main Black Sea gyre and coastal anticyclonic eddies; here hydrogen sulfide serves as a tracer of hydrophysical mixing processes.
Resumo:
Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.