97 resultados para SPATIO-TEMPORAL DISTRIBUTION
Resumo:
Leg 101 of the Ocean Drilling Program recovered a large volume of Neogene sediments from sites in the Straits of Florida, Little Bahama Bank, and Exuma Sound. In varying amounts, shallow-water, platform-derived carbonate debris is nearly ubiquitous. Reworked planktonic foraminifers are common, especially in the Pliocene-Pleistocene. At Site 626 in the Straits of Florida, a sequence of Holocene to upper Oligocene sediments was recovered. The greatest Neogene hiatus at this site spans the latest Miocene through Pliocene. Below this, several minor hiatuses are present in a generally conformable sequence. From the Little Bahama Bank transect (Sites 627, 628, and 630), a nearly complete composite Neogene section was sampled. At Site 627, a major unconformity separates lowermost Miocene sediments from middle to upper Eocene sediments. A second major unconformity occurs at Site 628. Here, middle Miocene sediments lie above uppermost Oligocene deposits. Sites 632, 633, and 631 in Exuma Sound all bottomed in a thick, lower Pliocene section. The mid-Pliocene is very thin at Sites 633 and 631, while it is better represented at Site 632. Major unconformities at Sites 627 and 628 appear to correlate with periods of elevated sea level, which suggests that carbonate platform shedding may be greatest during this part of the sea-level cycles. One of the salient features of the Bahamas is the lack of any systematic temporal distribution of hiatuses. Only a brief hiatus in the late Pliocene may be regional. It appears that local platform-shedding events were of equal or greater importance in developing the stratigraphy of the Bahamas than regional or eustatic events.
Resumo:
Based on observations during four scientific expeditions to the Kara Sea and the Siberian rivers Ob and Yenisei we determined the discharge, distribution and characteristics of dissolved organic matter (DOM). Surface concentrations of dissolved organic carbon (DOC) ranged from 151 IlM C in the northern Kara Sea to 939 IlM C in the river Ob. The estimated annual mean DOC concentration in the Yenisei (681 IlM C) was slightly higher than in the Ob (640 IlM C). Dissolved organic nitrogen (DON) concentrations typically varied between 5 and 15 IlM N with higher values in the rivers. Freshwater discharge and DOC concentrations experienced pronounced seasonal variations strongly affecting the spatial and temporal distribution of DOM in the Kara Sea. The largely conservative distribution of DOC and DON along the salinity gradient indicated the predominantly refractory character of riverine DOM. This observation was consistent with laboratory experiments, which showed only minor losses due to flocculation processes and bacterial consumption. Optical properties and relatively high C/N ratios (19 to 51) of DO M suggest that a large fraction of river DOM is of terrestrial origin and that phytoplankton contributed little to DOM on the Kara Sea shelf during the sampling periods. Together, the rivers Ob and Yenisei discharge about 8 Tg DOC yr- I into the Kara Sea. Due to the absence of efficient removal mechanisms in these estuaries the majority of riverine DOM appears to pass the estuarine mixing zone and is transported towards the Arctic Ocean.
Resumo:
Light greenish gray and pale purple color bands are common in the ooze and chalk of the Ontong Java Plateau. Analyses of Pleistocene and Pliocene ooze samples that contain abundant bands indicate that the purple bands are colored by finely disseminated iron sulfide, whereas the green bands are colored by finely disseminated Fe- and Al-bearing silicates (probably clays). No local contrasts in the total organic carbon contents, carbon and oxygen isotopic compositions, and grain sizes were found. Band abundances, counted from core photographs of all Leg 130 holes, can be correlated from hole to hole on the basis of age rather than depth. The temporal distribution of these color bands is also comparable with that of the green bands described from the Lord Howe Rise, which were previously interpreted as products of altered volcanic glass. This may indicate that the green and purple bands on the Ontong Java Plateau originate from the early alteration of volcanic ash. The crosscutting relationships between the green and purple bands and original structures in the host sediment indicate that the bands have been locally altered by redox conditions in the sediments after the bands were formed.