82 resultados para SEM image analysis
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
Resumo:
A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.
Resumo:
The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6?m and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus bacteria: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).
Resumo:
The HCMR_SES_LAGRANGIAN_GR1_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus biomass: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).