223 resultados para Retrograde tracers
Resumo:
Strontium isotopes are useful tracers of fluid-rock interaction in marine hydrothermal systems and provide a potential way to quantify the amount of seawater that passes through these systems. We have determined the whole-rock Sr-isotopic compositions of a section of upper oceanic crust that formed at the fast-spreading East Pacific Rise, now exposed at Hess Deep. This dataset provides the first detailed comparison for the much-studied Ocean Drilling Program (ODP) drill core from Site 504B. Whole-rock and mineral Sr concentrations indicate that Sr-exchange between hydrothermal fluids and the oceanic crust is complex, being dependent on the mineralogical reactions occurring; in particular, epidote formation takes up Sr from the fluid increasing the 87Sr/86Sr of the bulk-rock. Calculating the fluid-flux required to shift the Sr-isotopic composition of the Hess Deep sheeted-dike complex, using the approach of Bickle and Teagle (1992, doi:10.1016/0012-821X(92)90221-G) gives a fluid-flux similar to that determined for ODP Hole 504B. This suggests that the level of isotopic exchange observed in these two regions is probably typical for modern oceanic crust. Unfortunately, uncertainties in the modeling approach do not allow us to determine a fluid-flux that is directly comparable to fluxes calculated by other methods.
Resumo:
Because of a close relationship between detrital flux variations and magnetic susceptibility (MS) flux (MS cm**3 of bulk sediment multiplied by the linear sedimentation rate) variations in the southeast Indian basin of the southern ocean, MS flux profiles have been used to examine the spatial and temporal detrital flux changes in this basin during the last climatic cycle. Results indicate a general increase in detrital material input during the coldest periods, suggesting a widespread phenomenon, at least on the basin scale. Mineralogical data, geochemical data, and 87Sr/86Sr isotopic ratios have been used to determine the origin and transport mechanisms responsible for increased detrital flux during glacial periods. Mineralogical and geochemical data show that these glacial 'highs' are due to increases in both Kerguelen-Crozet volcanic and Antarctic detrital inputs. The 87Sr/86Sr isotopic composition of the >45-µm fraction indicates that the Kerguelen-Crozet province contributes to at least 50% of the coarse particule input to the west. This contribution decreases eastward to reach less than 10%. These tracers clearly indicate that the Crozet-Kerguelen province was a major source region of detrital in the western part of the basin during glacial times. In contrast, material of Antarctic origin is well represented in the whole basin (fine and coarse fractions). Because of the minor amount of coarse particles in the sediments, volcanic particles from Kerguelen and crustal particles from Antarctica have most probably been transported by the Antarctic bottom water current and/or the Circumpolar deepwater current during glacial periods as is the case today. Nevertheless, the presence of coarse particles even in low amount suggests also a transport by ice rafting (sea-ice and icebergs), originated from both Kerguelen and Antarctic sources. However, the relative importance of both hydrographic and ice-rafting modes of transport cannot be identified accurately with our data. During low sea level stands (glacial maximum periods), increasing instability and erosion of the continental platform and shallow plateaus could have resulted in a more efficient transfer of crustal and volcano-detrital material to the Southeast Indian basin. At the same time, extension of the grounded ice shelves over the continental margins and increase in the erosion rate of the Antarctic ice sheet could have induced a greater input of ice rafted detritus (IRD) to southern ocean basins. Enhancement of the circumpolar deepwater current strength might have also carried a more important flux of detrital material from Kerguelen. However, an increase in the bottom water flow is not necessarily required.
Resumo:
Deepwater circulation plays an important role in climate modulation through its redistribution of heat and salt and its control of atmospheric CO2. Oppo and Fairbanks (1987, doi:10.1016/0012-821X(87)90183-X) showed that the Southern Ocean is an excellent monitor of deepwater circulation changes for two reasons: (1) the Southern Ocean is a mixing reservoir for incoming North Atlantic Deep Water and recirculated water from the Pacific and Indian oceans; and (2) the nutrient/delta13C tracers of deepwater are not significantly changed by surficial processes within the Southern Ocean. We can extend these principles to the late Miocene because tectonic changes in the Oligocene and early and middle Miocene developed near-modern basinal configurations. However, on these time scales, changes in the oceanic carbon reservoir and mean ocean nutrient levels also affect the delta13C differences between ocean basins. From 9.8 to 9.3 Ma, Southern Ocean delta13C values oscillated between high North Atlantic values and low Pacific values. The Southern Ocean recorded delta13C values similar to Pacific values from 9.2 to 8.9 Ma, reflecting a low contribution of Northern Component Water (NCW). The delta13C differences between the NCW and Pacific Outflow Water (POW) end-members were low from 8.9 to 8.0 Ma, making it difficult to discern circulation patterns. NCW production may have completely shutdown at 8.6 Ma, allowing Southern Component Water (SCW) to fill the North Atlantic and causing the delta13C values in the North Atlantic, Pacific, and Southern oceans to converge. Deepwater delta13C patterns resembling the modern distributions evolved by 7.0 Ma: delta13C values were near 1.0 per mil in the North Atlantic; 0.0 per mil in the Pacific; and 0.5 per mil in the Southern Ocean. Development of near-modern delta13C distributions by 7.0 Ma resulted not only from an increase in NCW flux but also from an increase in deepwater nutrient levels. Both of these processes increased the delta13C difference between the North Atlantic and Pacific oceans. Deepwater circulation patterns similar to today's operated as early as 9.8 Ma, but were masked by the lower nutrient/delta13C differences. During the late Miocene, 'interglacial' intervals prevailed during intervals of NCW production, while 'glacial' intervals occurred during low NCW production.
Resumo:
During the GEISHA expedition (Geologische Expedition in die Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled extensively for the first time. Most of the rock types encountered represent amphibolite facies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conditions must have been at least partly reached during the peak of metamorphism. For the Pioneers Escarpment a varicolored succession of sedimentary and bimodal volcanic origin is typical. It comprises: quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet-quartz schists etc.; pelites: mica schists and plagioclase or plagioclase-microcline gneisses, aluminous schists; marls and carbonates: grey meta-limestones, carbonaceous quartzites, but also pure white, often fine-grained, saccharoidal marble, or a variety of tremolite marble, olivine (forsterite) marble, diopside-clinopyroxene-tremolite marble, etc.; basic volcanic rocks: amphibole fels, amphibolite schist, garnet amphibolite, and acidic to intermediate volcanic rocks: garnet-biotite schist, epidote-biotite-plagioclase gneiss, microcline gneiss. These rocks are considered to be a supracrustal unit, called the Pioneers Group. In the easternmost parts of the Pioneers Escarpment, e.g. at Vindberget, nonmetamorphic shales, sandstones and greywackes crop out, which are cover rocks of possibly Jurassic age. These metasediments, which represent a quartz-pelite-carbonate (QPC) association, indicate that deposition took place on a stable shelf, i.e. on the submerged rim of a craton. Marine shallow-water sedimentation including marls and aluminous clays form the protoliths. The volcanics may be part of a bimodal volcanics-arkose-conglomerate (BVAC) association. Geochemical analyses support the assumption of volcanic protoliths. This is demonstrated especially by the elevated amounts of the immobile, incompatible high-field-strength elements (HFSE) Nb, Ta, Ti, Y, and Zr encountered in some of the gneisses. Microscopic investigation suggests the existence of ortho-amphibolites. This is confirmed by the geochemistry. A bimodal volcanic association is evident. The amphibolites plot in both the tholeiite and calc-alkaline fields. The acidic volcanics are mainly rhyolitic. The sediments and volcanics were subjected to conditions of 10-11 kbar and 600°C during the peak of metamorphism, i.e. granulite facies metamorphism, which can be deduced from the Fe mole ratios of 0.71-0.73 in the garnet cores. Due to the relatively low temperatures, no anatectic melting took placc. The rims of the garnets show a Fe mole ratio of 0.84-0.86, and the coexisting mineral association garnet-biotite-staurolite-kyanite indicate amphibolite facies. The thermobarometry shows P-T conditions of 5-6 kbar and 570-580°C for this stage. The metamorphic history indicates deep burial at depths down to 35 km (subduction?) i.e. high pressure metamorphism, followed by pressure release due to uplift associated with retrograde metamorphism. This may have happened during a pre-Ross metamorphic event or orogeny. The Ross Orogeny at about 500 Ma probably just led to the weak greenschist facies overprint that is evident in the rocks of the Pioneers Group. Finally, sedimentation resumed in the area of the present Shackleton Range, or at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposited, forming sandstones and greywackes of possibly Jurassic age. There is no indication that these sediments belong to the former Turnpike Bluff Group.
Resumo:
The influence of atmospheric dust on climate and biogeochemical cycles in the oceans is well understood but poorly quantified. Glacial atmospheric dust loads were generally greater than those during the Holocene, as shown, for example, by the covariation of dust fluxes in the Equatorial Pacific and Antarctic ice cores. Nevertheless, it remains unclear whether these increases in dust flux were associated with changes in sources of dust, which would in turn suggest variations in wind patterns, climate or paleo-environment. Such questions can be answered using radiogenic isotope tracers of dust provenance. Here, we present a 160-kyr high-precision lead isotope time-series of dust input to the Eastern Equatorial Pacific (EEP) from core ODP Leg 138, Site 849 (0°11.59' N, 110°31.18' W). The Pb isotope record, combined with Nd isotope data, rules out contributions from Northern Hemisphere dust sources, north of the Intertropical Convergence Zone, such as Asia or North Africa/Sahara; similarly, eolian sources in Australia, Central America, the Northern Andes and Patagonia appear insignificant based upon the radiogenic isotope data. Fluctuations in Pb isotope ratios throughout the last 160 kyr show, instead, that South America remained the prevailing source of dusts to the EEP. There are two distinct South American Pb isotope end-members, constrained to be located in the south Central Volcanic Zone (CVZ, 22° S - 27.5° S) and the South Volcanic Zone (SVZ, 33° S - 43° S), with the former most likely originating in the Atacama Desert. Dust availability in the SVZ appears to be related to the weathering of volcanic deposits and the development of ash-derived Andosols, and influenced by local factors that might include vegetation cover. Variations in the dust fluxes from the two sources are in phase with both the dust flux and temperature records from Antarctican ice cores. We show that the forcing of dust provenance over time in the EEP overall is influenced by high-southerly-latitude climate conditions, leading to changes in the latitudinal position and strength of the South Westerlies as well as the coastal winds that blow northward along the Chilean margin. The net result is a modulation of dust emission from the Atacama Desert and the SVZ via a northward migration of the South Westerlies during cold periods and southward retreat during glacial terminations.
Resumo:
The first experiment of the ECOMARGE programme (ECOsystèmes de MARGE continentale) was initiated in 1983-1984, in the Gulf of Lions (northwestern Mediterranean Sea). The objectives of the ECOMARGE-I experiment were: to quantify the transfer of particulate matter, in general, and of organic carbon, in particular, from its introduction to and formation in the waters of the continental shelf-to its consumption or sedimentation on the shelf or its transfer to the slope and deep sea; and to understand the processes involved in that transfer, consumption and sedimentation together with their variability in space and time. The results of that experiment, from 1983 to 1988, are presented in this Special Issue. The highlights of the results are summarised in this paper. These results indicate that, of the particles formed in the waters of the continental shelf and those introduced by rivers, some are deposited as sediments on the shelf. A portion is transported offshore, however, to the slope and deep sea. The Rho^ne River, in the northeastern part of the study area, is the major source of continental material; this is transported to sea in a benthic nepheloid layer and, mostly, alongshore to the southwest. Here, it largely leaves the shelf through the canyons, especially the Lacaze-Duthiers Canyon. In the offshore waters, particle concentrations and distributions show surficial, intermediate and benthic nepheloid layers. These turbid structures increase towards the southwest, corresponding to the seaward shift of the front between the coastal waters and the Liguro-Provençal cyclonic gyre, a major forcing function in the Gulf of Lions. Considering the source and fate of particles (largely biogenic from the euphotic zone and abiogenic from deeper waters) a layered system is described, which is emphasized by the concentrations of natural and artificial elements and compounds. Of the flux of particles to the Lacaze-Duthiers Canyon, on a decadal scale, about 30% (as a minimum) is estimated to be stored as sediment; the remainder is transported down-canyon, towards the deep sea. The temporal variability of processes affecting this net seaward transport, of both biogenic and abiogenic material, is from hours, days to seasonal, and probably interannual, time scales. The response of the system to these variations is rapid, with pulses of increased discharge of particles from the adjacent shelf being detected in sediment traps in the Lacaze-Duthiers Canyon in less than 16 days (the temporal resolution of the traps). Based upon the study of tracers of particulate matter and environmental factors (i.e. river discharge and climatic conditions), it appears that the contribution from the Rho^ne River and its adjacent area is maximal during the winter; at this time, the flow of the Liguro-Provençal Current also increases. In contrast, the maximum relative contribution of the adjacent southwesterly area to the flux in the Lacaze-Duthiers Canyon occurs in summer, during storm events.
Resumo:
Sr and Nd isotopic compositions have been measured on the lithic fraction of last climatic cycle sediments from the North Atlantic (~40°N/~60°N), in order to identify the origins of the particles. From the reconstruction of their transport pathways, we deduce the mechanisms that explain their distributions. The main source regions are the Canadian shield (mostly the area of Baffin Bay and western Greenland), the Scandinavian shield, the European region (British Isles and Bay of Biscay), and Iceland. We observe a significant glacial/interglacial contrast, characterized by a dominant Icelandic input via near-bottom transport by North Atlantic Deep Water (NADW) during the interglacials and a largely continent-derived contribution of surface-transported, ice-rafted detritus (IRD) during the glacial period. During the last glacial period, the Heinrich events (abrupt, massive discharges of IRD) originated not only from the Laurentide ice sheet as heretofore envisioned but also from other sources. Three other major North Atlantic ice sheets (Fennoscandian, British Isles, and Icelandic) probably surged simultaneously, discharging ice and IRD into the North Atlantic. As opposed to theories implying a unique, Laurentide origin [Gwiazda et al., 1996 doi:10.1029/95PA03135] driven by an internal mechanism [MacAyeal, 1993 doi:10.1029/93PA02200], we confirm that the Icelandic and the Fennoscandian ice sheets also surged as recently proposed by other authors, and we here also distinguish a possible detrital contribution from the British Isles ice sheet. This pan-North Atlantic phenomenon thus requires a common regional, external forcing.
Resumo:
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.
Resumo:
We studied two deep-sea cores from the Scotia Sea to reconstruct past atmospheric circulation in the southern hemisphere and to resolve a long-standing debate on the interpretation of magnetic susceptibility (MS) records in Southern Ocean (SO) sediment. High-sedimentation sites MD07-3134 (0.2 - 1.2 m/kyr) and MD07-3133 (0.3 - 2 m/kyr) cover the last 92.5 kyr and 36 kyr, respectively. Both exhibit a one-to-one coupling of the MS and Ca2+ signal to the non-sea salt (nss) Ca2+ signal of the EDML ice core, clearly identifying atmospheric circulation as means of distribution. Comparison of additional proxies also excludes major influence by volcanic sources, sea-ice, icebergs, or oceanic current transport. The close resemblance of the dust proxies over the last glacial cycle, in turn, allows for the establishment of an age model of unprecedented resolution and precision for SO deep-sea sediment because atmospheric transport involves no major leads or lags. This is of particular importance because MS is routinely measured on deep-sea cores in the SO but the sediments usually lack biogenic carbonate and therefore had only limited stratigraphic control so far. Southern South America (SSA) is the likely source of eolian material because Site MD07-3133, located closer to the continent, has slightly higher MS values than Site MD07-3134, and also the MS record of Patagonian Site SALSA shows comparable variability. Patagonia was the dust source for both the Scotia Sea and East Antarctica. Dust fluxes were several times higher during glacial times, when atmospheric circulation was either stronger or shifted in latitude, sea level was lowered, shelf surfaces were exposed, and environmental conditions in SSA were dominated by glaciers and extended outwash plains. Hence, MS records of SO deep-sea sediment are reliable tracers of atmospheric circulation, allowing for chronologically-constrained reconstructions of the circum Antarctic paleoclimate history.
Resumo:
The deployment of CCS (carbon capture and storage) at industrial scale implies the development of effective monitoring tools. Noble gases are tracers usually proposed to track CO2. This methodology, combined with the geochemistry of carbon isotopes, has been tested on available analogues. At first, gases from natural analogues were sampled in the Colorado Plateau and in the French carbogaseous provinces, in both well-confined and leaking-sites. Second, we performed a 2-years tracing experience on an underground natural gas storage, sampling gas each month during injection and withdrawal periods. In natural analogues, the geochemical fingerprints are dependent on the containment criterion and on the geological context, giving tools to detect a leakage of deep-CO2 toward surface. This study also provides information on the origin of CO2, as well as residence time of fluids within the crust and clues on the physico-chemical processes occurring during the geological story. The study on the industrial analogue demonstrates the feasibility of using noble gases as tracers of CO2. Withdrawn gases follow geochemical trends coherent with mixing processes between injected gas end-members. Physico-chemical processes revealed by the tracing occur at transient state. These two complementary studies proved the interest of geochemical monitoring to survey the CO2 behaviour, and gave information on its use.
Resumo:
Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were discovered in Berriasian to Valanginian hemipelagic (shelfal) to eupelagic (deep-sea) sediments of the Wombat Plateau (Site 761), Argo Abyssal Plain (Sites 261, 765), southern Exmouth Plateau (Site 763), and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with trachyandesitic to rhyolitic ash as parent material is proved by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, slender zircon), and rock fragments, and by a vitroclastic ultra-fabric (smectitized glass shards). For the Argo Abyssal Plain, we can distinguish four types of bentonitic claystones of characteristic waxy appearance: (1) pure smectite bentonites, white to light gray, sharp basal contacts, and a homogeneous cryptocrystalline smectite matrix, (2) thin, greenish-gray bentonitic claystones having sharp upper and lower contacts, (3) gray-green bentonitic claystones mottled with background sedimentation and a distinct amount of terrigenous and pelagic detrital material, and (4) brick-red smectitic claystones having diffuse sedimentary contacts and a doubtful volcanic origin. For the other drill sites, we can distinguish between (1) pure bentonitic claystones similar in appearance and chemical composition to Type 1 of the Argo Abyssal Plain (except for gradual basal contacts) and (2) impure bentonitic claystones containing textures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components resulting from resedimentation or bioturbation. The ash layers were progressively altered (smectitized) during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally, completely homogenized to a pure smectite matrix without obvious relict structures. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau and, via turbidity currents, into the adjacent abyssal plains. The Wombat and Argo abyssal plain bentonites are interpreted, at least in parts, as proximal or distal ash turbidites, respectively.
Resumo:
A comprehensive experimental study, utilizing a rocking autoclave hydrothermal apparatus with isotope tracers, was applied to evaluate the temperature of squeezing artifacts on B contents and isotopic compositions in pore waters. The partition coefficient (KD) was determined at temperatures from 25 ° to 350 °C, at 800 bars, and this information was applied to reconstruct pore water B and d11B in ODP drill sites, where pH, T, and porosity are known. The partition coefficient of B is a function of temperature, pH, and sediment mineralogy. The solution pH exerts a dominant control at low temperatures; however, KD decreases to a value of essentially zero (compared to that of KD = ~3.5 at 25 °C) at high temperatures indicating no adsorption. Two empirical equations were derived to represent most of the available experimental results. For pelagic clay rich sediments, a KD = -3.84-0.020T + 0.88pH (R = 0.84; 1sigma = 0.25) is established. For sediments that have experienced progressive metamorphism, a KD = -1.38-0.008T + 0.59pH (R = 0.81; 1sigma = 0.37) can be applied. Similarly the effect on pore water d11B can be corrected if the fractionation factors at different temperatures are assumed. The corrected B and d11B in ODP Sites 671, 672, and 808 indicate significant mobilization of bulk B in sediment (exchangeable + lattice bound) at depth, especially near the décollement zone or other potential flow conduits. Tectonically expelled fluids from mud diapirs of Barbados Ridge Complex, hot springs of Rumsey Hills, California, and mud pot waters of the Salton Sea geothermal field, are enriched in B (up to 20 mM) with lower d11B, supporting the argument of B mobilization as a result of fluid expulsion in accretionary prisms.