57 resultados para Resolution Trust Corporation (U.S.)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thick Holocene sedimentary sections (>45 m) cored in the Palmer Deep by the United States Antarctic Program (USAP) and during Ocean Drilling Program (ODP) Leg 178 provide the first opportunity to examine past geomagnetic field behavior at high southern latitudes. After removal of a low-coercivity drilling overprint the sediments display a stable, single-component remanent magnetization. Two short cores that recovered the uppermost 2.6 m of sediment have inclinations that fluctuate about the present day inclination (-57°) measured at Faraday Station, and several features with wavelengths of 10 to 20 cm appear to be correlative. However, shipboard measurements of inclination fluctuations on split-core samples from three holes drilled at ODP Site 1098 do not correlate well with each other, even though the intensity and susceptibility data correlate very well and the overall mean inclination for cores from each hole is consistent with the expected geocentric axial dipole (GAD) inclination. The correlation is improved dramatically by using inclinations measured on u-channels taken from the pristine center of a split core. Consequently, the anomalous directions and the resulting poor between-hole correlation of inclinations obtained from shipboard data can be attributed to coring-induced deformation, which is common on the outer edge of ODP piston cores, and/or measurement artifacts in the split-core data. Our preferred inclination record is thus derived from u-channel results. The upper ~25 m represents continuous sedimentation over the past 9000 yr, with an average sedimentation rate exceeding 250 cm/kyr (0.25 cm/yr). Given that remanence measurements on u-channels average over an interval <7 cm long, we obtained independent measurements of the paleo-geomagnetic field that average over only ~30 yr. This high-resolution record is characterized by an inclination that fluctuates within +/-15° of the current GAD inclination.