293 resultados para Rare-earth exchanged zeolite-Y


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to not, vert, similar ~103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng/l range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng/l while between 0.5 and 5 ng/l accuracy and precision are element dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes governing the formation of rare earth element (REE) composition are under consideration for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different size fractions) within the Clarion-Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity size of micronodules has positive correlation with Mn content and Mn/Fe and P/Fe ratios and negative correlation with Fe, P, REE, and Ce anomaly. Behavior of REE in micronodules from sediments within bioproductive zones is related to increase of influence of diagenetic processes in sediments as a response to the growth of size of micronodules. Distinctions in chemical composition of micronodules and nodules are related to their interaction with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in labile fraction of sediments reworked during diagenesis. Sources of material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to sorption of phosphate-ion from bottom and pore waters. Sorption of phosphate-ion results in additional sorption of REE.