55 resultados para Porous precipitated SiO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of borehole waters sampled in Hole 504B during Leg 92 revealed changes in major-ion composition similar to changes observed previously (during Leg 83). The uniformity of chloride concentrations with increasing depth suggests efficient downhole mixing processes along density gradients caused by large temperature gradients. Chemical and mineralogical studies of suspended drilling mud (bentonite) suggest that this material has undergone substantial alteration and that CaSO4 (anhydrite/gypsum) has precipitated in the deeper parts of the hole. Rare earth element studies suggest contributions of both the bentonites and the basalts to the REE distributions. Studies of the isotopic composition (87Sr/86Sr) of dissolved strontium indicate a strong contribution of basaltic nonradiogenic strontium, although differences between the Leg 83 and Leg 92 data indicate an influence of bentonite during Leg 92. The oxygen isotope composition of the water does not change appreciably downhole. This uniformity can be understood in terms of high water-rock ratios and suggests that the chemical changes observed are due either to alteration processes involving bentonites and basaltic material from the walls of the hole or to exchange with formation fluids from the surrounding basement, which may have altered in composition at relatively high water-rock ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to study the mobility and budget of Fe isotopes in the oceanic crust and in particular during low-temperature interaction of seawater with oceanic basalt. We carried out this investigation using samples from Ocean Drilling Program (ODP) Site 801C drilled during Leg 129 and Leg 185 in Jurassic Pacific oceanic crust seaward of the Mariana Trench. The site comprises approximately 450 m of sediment overlying a section of 500 m of basalt, which includes intercalated pelagic and chemical sediments in the upper basaltic units and two low-temperature (10-30°C) ocherous Si-Fe hydrothermal deposits. Fe was chemically separated from 70 selected samples, and 57Fe/54Fe ratios were measured by MC-ICP-MS Isoprobe. The isotopic ratios were measured relative to an internal standard solution and are reported relative to the international Fe-standard IRMM-14. Based on duplicate measurements of natural samples, an external precision of 0.2? (2 sigma) has been obtained. The results indicate that the deep-sea sediment section has a restricted range of d57Fe, which is close to the igneous rock value. In contrast, large variations are observed in the basaltic section with positive d57Fe values (up to 2.05?) for highly altered basalts and negative values (down to ?2.49?) for the associated alteration products and hydrothermal deposits. Secondary Fe-minerals, such as Fe-oxyhydroxides or Fe-bearing clays (celadonite and saponite), have highly variable d57Fe values that have been interpreted as resulting from the partial oxidation of Fe(2+) leached during basalt alteration and precipitated as Fe(3+)-rich minerals. In contrast, altered basalts at Site 801C, which are depleted in Fe (up to 80%), display an increase in d57Fe values relative to fresh values, which suggest a preferential leaching of light iron during alteration. The apparent fractionation factor between dissolved Fe(2+) and Fe remaining in the mineral is from 0.5? to 1.3? and may be consistent with a kinetic isotope fractionation where light Fe is stripped from the minerals. Alternatively, the formation of secondary clays minerals, such as celadonite during basalt alteration may incorporate preferentially the heavy Fe isotopes, resulting in the loss of light Fe isotopes in the fluids. Because microbial processes within the oceanic crust are of potential importance in controlling rates of chemical reactions, Fe redox state and Fe-isotope fractionation, we evaluated the possible effect of this deep biosphere on Fe-isotope signatures. The Fe-isotope systematics presented in this study suggest that, even though iron behavior during seafloor weathering may be mediated by microbes, such as iron-oxidizers, d57Fe variations of more than 4? may also be explained by abiotic processes. Further laboratory experiments are now required to distinguish between various processes of Fe-isotope fractionation during seafloor weathering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An up to 2-cm thick Chicxulub ejecta deposit marking the Cretaceous-Paleogene (K-Pg) boundary (the "K-T" boundary) was recovered in six holes drilled during ODP Leg 207 (Demerara Rise, tropical western Atlantic). Stunning features of this deposit are its uniformity over an area of 30 km2 and the total absence of bioturbation, allowing documentation of the original sedimentary sequence. High-resolution mineralogical, petrological, elemental, isotopic (Sr-Nd), and rock magnetic data reveal a distinct microstratigraphy and a range of ejecta components. The deposit is normally graded and composed predominantly of rounded, 0.1- to max. 1-mm sized spherules. Spherules are altered to dioctahedral aluminous smectite, though occasionally relict Si-Al-rich hydrated glass is also present, suggesting acidic precursor lithologies. Spherule textures vary from hollow to vesicle-rich to massive; some show in situ collapse, others include distinct Fe-Mg-Ca-Ti-rich melt globules and lath-shaped Al-rich quench crystals. Both altered glass spherules and the clay matrix (Site 1259B) display strongly negative epsilon-Nd (T=65Ma) values (-17) indicating uptake of Nd from contemporaneous ocean water during alteration. Finally, Fe-Mg-rich spherules, shocked quartz and feldspar grains, few lithic clasts, as well as abundant accretionary and porous carbonate clasts are concentrated in the uppermost 0.5-0.7 mm of the deposit. The carbonate clasts display in part very unusual textures, which are interpreted to be of shock-metamorphic origin. The preservation of delicate spherule textures, normal grading with lack of evidence for traction transport, and sub-millimeter scale compositional trends provide evidence for this spherule deposit representing a primary air-fall deposit not affected by significant reworking. The ODP Leg 207 spherule deposit is the first known dual-layer K-Pg boundary in marine settings; it incorporates compositional and stratigraphic aspects of both proximal and distal marine sites. Its stratigraphy strongly resembles the dual-layer K-Pg boundary deposits in the terrestrial Western Interior of North America (although there carbonate phases are not preserved). The occurrence of a dual ejecta layer in these quite different sedimentary environments - separated by several thousands of kilometers - provides additional evidence for an original sedimentary sequence. Therefore, the layered nature of the deposit may document compositional differences between ballistic Chicxulub ejecta forming the majority of the spherule deposit, and material falling out from the vapor (ejecta) plume, which is concentrated in the uppermost part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green clay layers are reported from the Pliocene-Holocene intervals in five of the six sites drilled in the South China Sea (SCS) during Leg 184. Centimeter-scale discrete, discontinuous, and bioturbated layers, constituted by stiff and porous green clays, were observed, sometimes associated with iron sulfides and pyrite. Detailed mineralogical and geochemical analyses indicate that they differentiate from the host sediments in their higher content of iron, smectite, and mixed-layered clays and lower amounts of calcite, authigenic phosphorus, quartz, and organic matter. Although no glauconite was observed, the mineralogy and geochemistry of green clay layers, along with their geometrical relation to background sediments, suggest that they most likely represent the result of the first steps of glauconitization. Correlation between green layers and volcanic ash layers was suggested for green laminae observed elsewhere in Pacific sediments but was not confirmed at SCS sites. Statistical analysis of the temporal distribution of green layers in the records of the last million years suggests that green clay layers have become more frequent since 600 ka. Only at Site 1148 does the green layer record show a statistically significant cyclicity which may be related to orbital eccentricity. A possible influence of sea level variations, related both to climatic changes and tectonism, is postulated.