65 resultados para Polychlorinated Biphenyls
Resumo:
The factors influencing prolactin (PRL) variation in birds and in wildlife in general have rarely been investigated with respect to the physiological impacts of exposure to environmental contaminants. We investigated the associations between circulating baseline PRL levels and concentrations of eight persistent organohalogen contaminant (OHC) classes (i.e., major organochlorines and brominated flame retardants, and associated metabolic products) in blood (plasma) of free-ranging glaucous gulls (Larus hyperboreus), a top predator in the Norwegian Arctic, engaged in the process of incubation. We further examined whether plasma OHC concentrations were associated with the variation of PRL in glaucous gulls exposed to a standardized capture/restraint protocol. Plasma OHC concentrations in male glaucous gulls were 2-to 3-fold higher relative to females. Baseline PRL levels tended to be higher in females compared to males, although not significantly (p = 0.20). In both males and females, the 30-min capture/restraint protocol led on average to a 26% decrease in PRL levels, which resulted in a rate of PRL decrease of 0.76 ng/mL/min. The baseline PRL levels and the rate of decrease in PRL levels tended to vary negatively with plasma OHC concentrations in males, but not in females, although several of these associations did not adhere with the criterion of significance (alpha = 0.05). Present results suggest that in highly OHC-exposed male glaucous gulls, the control of PRL release may be affected by the direct or indirect modulating actions of OHCs and/or their metabolically derived products. We conclude that potentially OHC-mediated impact on PRL secretion in glaucous gulls (males) may be a contributing factor to the adverse effects observed on the reproductive behavior, development and population size of glaucous gulls breeding in the Norwegian Arctic.
Resumo:
We investigated whether the hepatic cytochrome P450 1A activity (measured as 7-ethoxyresorufin-O-deethylase (EROD)) and plasma thyroid hormone and liver retinoid concentrations were explained by liver and blood levels of halogenated organic contaminants (HOCs) in free-ranging breeding northern fulmars (Fulmarus glacialis) from Bjornoya in the Norwegian Arctic. Hepatic EROD activity and liver levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were positively correlated, suggesting that hepatic EROD activity is a good indicator for dioxin and dioxin-like HOC exposure in breeding northern fulmars. There were not found other strong relationships between HOC concentrations and hepatic EROD activity, plasma thyroid or liver retinoid concentrations in the breeding northern fulmars. It is suggested that the HOC levels found in the breeding northern fulmars sampled on Bjornoya were too low to affect plasma concentrations of thyroid hormones and liver levels of retinol and retinyl palmitate, and that hepatic EROD activity is a poor indicator of polychlorinated biphenyl (PCB) and pesticide exposure.
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
We assessed the relationship between exposure to organohalogen polluted minke whale (Balaenoptera acutorostrata) blubber and liver morphology and function in a generational controlled study of 28 Greenland sledge dogs (Canis familiaris). The prevalence of portal fibrosis, mild bile duct hyperplasia, and vascular leukocyte infiltrations was significantly higher in the exposed group (all Chi-square: p<0.05). In case of granulomas, the frequency was significantly highest in the bitches (P generation) while the prevalence of portal fibrosis was highest in the F generation (pups) (both Chi-square: p<0.05). No significant difference between exposed and controls was found for bile acid, ALAT, and ALKP, while ASAT and LDH were significantly highest in the control group (both ANOVA: p<0.05). We therefore suggest that a daily intake of 50-200 g environmentally organohalogen polluted minke whale blubber can cause liver lesions in Greenland sledge dogs. It is reasonable to infer that other apex predators such as polar bears (Ursus maritimus) and humans may suffer from similar impacts.