603 resultados para Pochengzi Glaciation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study a radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) in the Verkhoyansk Mountains was used to reconstruct vegetation and climate change since about 15 kyr BP (1 kyr=1000 cal. yr). The pollen record and pollen-based biome reconstruction suggest that open cool steppe and grass and sedge tundra communities with Poaceae, Cyperaceae, Artemisia, Chenopodiaceae, Caryophyllaceae and Selaginella rupestris dominated the area from 15 to 13.5 kyr BP. On the other hand, the constant presence of Larix pollen in quantities comparable to today's values points to the constant presence of boreal deciduous conifer trees in the regional vegetation during the last glaciation. A major spread of shrub tundra communities, including birch (Betula sect. Nanae), alder (Duschekia fruticosa) and willow (Salix) species, is dated to 13.5-12.7 kyr BP, indicating a noticeable increase in precipitation toward the end of the last glaciation, particularly during the Allerød Interstadial. Between 12.7 and 11.4 kyr BP pollen percentages of herbaceous taxa rapidly increased, whereas shrub taxa percentages decreased, suggesting strengthening of the steppe communities associated with the relatively cold and dry Younger Dryas Stadial. However, the pollen data in hand indicate that Younger Dryas climate was less severe than the climate during the earlier interval from 15 to 13.5 kyr BP. The onset of the Holocene is marked in the pollen record by the highest values of shrub and lowest values of herbaceous taxa, suggesting a return of warmer and wetter conditions after 11.4 kyr BP. Percentages of tree taxa increase gradually and reach maximum values after 7 kyr BP, reflecting the spread of boreal cold deciduous and taiga forests in the region. An interval between 7 and 2 kyr BP is noticeable for the highest percentages of Scots spine (Pinus subgen. Diploxylon), spruce (Picea) and fir (Abies) pollen, indicating mid-Holocene spread of boreal forest communities in response to climate amelioration and degradation of the permafrost layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments recovered at ODP Site 984 on the Reykjanes Ridge provided multicentennial-scale records (SST, planktic and benthic delta18O, IRD and magnetic susceptibility) of Late Pliocene climate change over the onset of Northern Hemisphere glaciation (NHG), 2.95-2.82 Ma. Short-term climate variations prior and after the onset of continent-wide glaciation were compared to test the hypothesis, whether Dansgaard-Oeschger (DO) cycles may have been triggered by continental ice breakouts. By means of spectral analyses for two selected interglacial stages prior to and after NHG (G15 and G1), we found that climate variability resembled that of the Holocene and the mid-Pliocene warm period. In contrast, DO-like periodicities near 1470, 2900, and 4400 yr indeed only occurred in glacial stages after the onset of NHG (G14, G6, and 104), but hardly in stage G20 prior to the onset. These results suggest a causal link between DO cycles and the Late Pliocene onset of major NHG and ice breakouts in the North Atlantic. This data set provides all primary data and spectral analysis related to this scientific work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative records of Globorotalia puncticulata and Globorotalia inflata, the last two members of the Globorotalia (Globoconella) lineage, obtained from North Atlantic sediments collected at DSDP Site 552, ODP Site 659 and ODP Site 665, are used to examine fluctuations in the biogeographic distribution of these species in the Late Pliocene between 3 and 2 Ma. Abundance data indicate that prior to the expansion of Northern Hemisphere glaciation at about 2.5 Ma, Gr. puncticulata was an important component of the planktonic foraminiferal fauna and had a geographic distribution ranging from 2°N to at least 56°N in the North Atlantic. A previously undescribed 6 chambered variant of Gr. puncticulata is found at both Sites 659 and 665. The stratigraphic distribution of this morphotype is restricted, first occurring at 2.9 Ma and then disappearing when glacial intensity increased at 2.75 Ma (isotope stage 110). Similar declines in Gr. puncticulata abundances occurred during glacial isotope stages 102, 100, and 98 immediately prior to the extinction of Gr. puncticulata during glacial isotope stage 96. It appears that this extinction event was latitudinally diachronous within the North Atlantic, occurring earliest in the north at Site 552 (2.453 Ma), then at Site 659 (2.443 Ma) and later still in the Site 665 equatorial record (2.438 Ma). At Site 665 the first record of Gr. inflata occurs during glacial isotope stage 94 (2.416 Ma), shortly after the extinction of Gr. puncticulata. In the mid latitude North Atlantic there was a 340,000 year period following the disappearance of Gr. puncticulata when the Globoconella lineage was absent (the Gr. inflata gap). The Gr. inflata population found in the equatorial Atlantic must therefore have been introduced from the South Atlantic, probably by the South Equatorial Current. Faunal records from Sites 552 and 659 show that it was not until glacial isotope stage 78 (2.10 Ma) that Gr. inflata became widely established in the North Atlantic. Prior to this large-scale migration event, there were two limited colonisation events during glacial isotope stages 86 and 82 when Gr. inflata populations reached as far as Site 659 in the eastern North Atlantic. These incursions are believed to be reflect the entrainment of Gr. inflata within South Atlantic Central Water and the northward subsurface transport of individuals to the coastal upwelling zone off northwest Africa. It seems likely that the same mechanism was responsible for the re-establishment of the Globoconella lineage in the North Atlantic at 2.10 Ma, but in this instance additional factors, such as enhanced glacial circulation patterns and ecological changes within planktonic foraminiferal faunas, resulted in the successful expansion of Gr. inflata across the North Atlantic and the Mediterranean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arkhangelsk area lies in the region that was reached by the northeastern flank of the Scandinavian ice sheet during the last glaciation. Investigations of Late Pleistocene sediments show interglacial terrestrial and marine conditions with sea level up to 52 m above the present level. An unconformity in the stratigraphy suggests a hiatus representing the Early Valdaian (Weichselian) and the beginning of the Middle Valdaian. This unconformity could be related to a low base level and isostatic depression of the area north of Arkhangelsk, either caused by ice masses advancing from the Kara and Barents ice sheets and/or to Scandinavian ice over the Kola Peninsula. During Middle Valdaian, from c. 66 ka BP, until the advance of the Late Valdaian glacier, c. 17-16 ka BP, peat formation, and northward fluvial sedimentation occurred coexisting with permafrost conditions in a later phase. Before the glacier advance, the base level rose and thick vertical accumulations of fluvial sediments were formed. Associated with this glacier advance from the north-northwest, ice damming occurred. Fluvial drainage was opposite to the present drainage pattern and deposition appeared in glaciolacustrine ponds in the area outside the limit of the glaciation. After the deglaciation that started c. 15 ka BP, permafrost conditions and downwasting of buried stagnant glacier ice prevailed until at least 10.7 ka BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A marked ocean acidification event and elevated atmospheric carbon dioxide concentrations following the extreme environmental conditions of the younger Cryogenian glaciation have been inferred from boron isotope measurements. Calcium and magnesium isotope analyses offer additional insights into the processes occurring during this time. Data from Neoproterozoic sections in Namibia indicate that following the end of glaciation the continental weathering flux transitioned from being of mixed carbonate and silicate character to a silicate-dominated one. Combined with the effects of primary dolomite formation in the cap dolostones, this caused the ocean to depart from a state of acidification and return to higher pH after climatic amelioration. Differences in the magnitude of stratigraphic isotopic changes across the continental margin of the southern Congo craton shelf point to local influences modifying and amplifying the global signal, which need to be considered in order to avoid overestimation of the worldwide chemical weathering flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6-2.4 Ma). (2) A transitional growth phase (2.4-1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic-Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of both culture and sediment core studies, the ratio of germanium (Ge) to silicon (Si) in diatom shells has been proposed as a proxy for monitoring whole-ocean changes in seawater Ge/Si, a ratio affected by changes in continental weathering. However, because of the difficulties of extracting and cleaning diatom frustules from deep-sea sediments, only samples from highly pure diatom oozes in the Antarctic region have been previously analyzed. Here we present data on diatom Ge/Si ratios, (Ge/Si)opal, for the time interval between 3.1 and 1.9 Ma from a mid-latitude, coastal upwelling area where significant terrigenous sediment input complicated the sample processing and analyses. In general, our (Ge/Si)opal values show the same decreasing trend after 2.6 Ma than previously measured in Antarctic sediments (Shemesh et al., 1989. Paleoceanography 4, 221-231), but with a noisier background that may reflect the local imprint of proximal continental input superimposed upon global changes in the ocean reservoir. The time of initiation of large-scale North Hemisphere glaciation at ~2.6 Ma is characterized by a declining pattern of diatom Ge/Si ratios, which could have resulted from a global increase in the input of riverine Si due to enhanced silica weathering and/or equatorward (northward) intrusions of subantarctic waters enriched in silica. High (Ge/Si)opal ratios are associated with high opal contents from the same sediment samples and with warm climate as indicated by depleted benthic foraminiferal d18O values from the North and Equatorial Atlantic. Cold periods signified by enriched benthic d18O values, on the contrary, are associated with lower (Ge/Si)opal ratios. We interpret diatom Ge/Si values to reflect the prevailing weathering state on the continents, with greater chemical weathering during warm and wet periods of the Pliocene and less during cooler and drier intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Site 658, cored below a major upwelling cell offshore Cap Blanc, contains a largely undisturbed hemipelagic sediment section spanning the Brunhes Chron and the early Quaternary and late Pliocene. The companion Site 659 recovered a complete and undisturbed Neogene profile further offshore that serves as a nonupwelling pelagic reference section. Oxygen and carbon isotope ratios in benthic (C. wuellerstorfi and in part Uvigerina sp.) and planktonic foraminifers (G. inflata) provide a climatic record of high resolution for the Brunhes Chron. At Site 658 the record extends back to the early Pleistocene and late Pliocene. The standard oxygen isotope record of the last 730,000 yr is markedly refined by a well-documented high-frequency variation (e.g., by a new "aborted" ice age at stage 13.2 and by Younger-Dryas style climatic setbacks during most terminations). In the late Pliocene, the numerical oxygen isotope stage taxonomy was extended back to stage 137 about 3.3 Ma ago. In comparison with published records, stage 114 at 2.7 Ma represents the first major glaciation event, when 18O was short-term enriched up to a middle Pleistocene glacial d18O level. About 3.17 Ma ago (stage 133), the interglacial oxygen isotope values of C. wuellerstorfi started to increase by 0.5 per mil until 2.7 Ma and then remained largely constant until the Holocene. Based on the d13C difference between C. wuellerstorfi and G. inflata, the dissolved CO2 in the ambient bottom water of Site 658 was dominated by the flux of particulate carbon from the overlying upwelling cell during the last 630,000 yr. In contrast, the advection of (upper) North Atlantic Bottom Water dominated in the control of the local CO2 content during the early Pleistocene and late Pliocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Riverine water and sediment discharge to the Arctic Ocean is among the most important parameters influencing Arctic climate. It is clear that the evaluation of Arctic paleoclimate requires information on the paleodischarge of major rivers entering the sedimentation basin. Presently, the water discharge of the Ob River accounts for about 12% of the total input of river water into the Arctic Ocean. During the investigation of the Kara Sea in the framework of the Russian-German SIRRO Project, the history of Yenisei discharge received much attention in a number of publications. This paper presents the results of lithological and geochemical investigations with application to the Holocene discharge of the Ob River. Qualitative (SiO2, Al2O3, K2O, and some modules) and quantitative (sedimentation rates and absolute masses of sedimentary material) parameters were used to characterize the history of the Ob sediment discharge. It was shown that the investigated paleochannels of the Ob were initiated at the Pleistocene-Holocene boundary, and during the first half of the Holocene, the river discharge decreased irregularly with decreasing age of sediments. The observed maxima are in fairly good agreement with the data for the Yenisei. We proposed a hypothesis on the influence of glacioisostatic movements in the marginal region of the former Kara ice sheet of late Valdai age on the cessation of marine-fluvial glaciation in the paleochannels of Ob and Yenisei in the periphery of the Ob-Yenisei shoal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Massive clinoptilolite authigenesis was observed at about 1105 meters below sea floor (mbsf) in lower Miocene wellcompacted carbonate periplatform sediments from the Great Bahama Bank [Ocean Drilling Program, ODP Leg 166, Site 1007]. The diagenetic assemblage comprises abundant zeolite crystallized within foraminifer tests and sedimentary matrix, as well as Mg smectites. In carbonate-rich deposits, the formation of the zeolite requires a supply of silica. Thus, the objective of the study is to determine the origin of the silica supply, its diagenetic evolution, and consequently the related implications on interpretation of the sedimentary record, in terms of local or global paleoceanographic change. For lack of evidence for any volcaniclastic input or traces of Si-enriched deep fluids circulation, an in situ biogenic source of silica is validated by isotopic data and chemical modeling for the formation of such secondary minerals in shallow-water carbonate sequences. Geochemical and strontium isotopic data clearly establish the marine signature of the diagenetic zeolite, as well as its contemporaneous formation with the carbonate deposition (Sr model ages of 19.6-23.2 Ma). The test of saturation for the pore fluids specifies the equilibrium state of the present mineralogical assemblage. Seawater-rock modeling specifies that clinoptilolite precipitates from the dissolution of biogenic silica, which reacts with clay minerals. The amount of silica (opal-A) involved in the reaction has to be significant enough, at least 10 wt.%, to account for the observed content of clinoptilolite occurring at the most zeolite-rich level. Modeling also shows that the observed amount of clinoptilolite (~19%) reflects an in situ and short-term reaction due to the high reactivity of primary biogenic silica (opal-A) until its complete depletion. The episodic occurrence of these well-lithified zeolite-rich levels is consistent with the occurrence of seismic reflectors, particularly the P2 seismic sequence boundary located at 1115 mbsf depth and dated as 23.2 Ma. The age range of most zeolitic sedimentary levels (biostratigraphic ages of 21.5-22 Ma) correlates well with that of the early Miocene glaciation Mi-1 and Mi-1a global events. Thus, the clinoptilolite occurrence in the shallow carbonate platform environment far from volcanogenic supply, or in other sensitive marine areas, is potentially a significant new proxy for paleoproductivity and oceanic global events, such as the Miocene events, which are usually recognized in deep-sea pelagic sediments and high latitude deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios in benthic foraminifers have been determined at 10 cm intervals through the top 59 m of DSDP Hole 552A. This provides a glacial record of remarkable resolution for the late Pliocene and Pleistocene. The major glacial event which marked the onset of Pleistocene-like glacial-interglacial alternations was at about 2.4 m.y. ago. These very high-resolution data do not support the notion of significant Northern Hemisphere glaciation between 3.2 and 2.4 m.y. ago.