165 resultados para Planetary Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Refractory megacrysts of olivine, plagioclase, chromian diopside and Cr-Al spinel, which were not in equilibrium with the host oceanic tholeiite on eruption, are present in samples from several dredge sites and DSDP drill sites in the Atlantic and Pacific Oceans. They have multiple origins: (1) cognate or accidental mantle fragments; (2) relict fragments from fractional crystallization of parental liquids considerably more primitive than oceanic tholeiite; and most commonly (3) the fractional crystallization products of such liquids mixed with oceanic tholeiite magma. Melt inclusions in chrome-spinel phenocrysts provide evidence for this postulated Mg- and Ca-rich magma which has counterparts in the Scottish Tertiary Province and in west Greenland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of the Cretaceous Caribbean plateau, including the komatiites of Gorgona, has been linked to the currently active Galápagos hotspot. We use Hf-Nd isotopes and trace element data to characterise both the Caribbean plateau and the Galápagos hotspot, and to investigate the relationship between them. Four geochemical components are identified in the Galápagos mantle plume: two 'enriched' components with epsilon-Hf and epsilon-Nd similar to enriched components observed in other mantle plumes, one moderately enriched component with high Nb/Y, and a fourth component which most likely represents depleted MORB source mantle. The Caribbean plateau basalt data form a linear array in Hf-Nd isotope space, consistent with mixing between two mantle components. Combined Hf-Nd-Pb-Sr-He isotope and trace element data from this study and the literature suggest that the more enriched Caribbean end member corresponds to one or both of the enriched components identified on Galápagos. Likewise, the depleted end member of the array is geochemically indistinguishable from MORB and corresponds to the depleted component of the Galápagos system. Enriched basalts from Gorgona partially overlap with the Caribbean plateau array in epsilon-Hf vs. epsilon-Nd, whereas depleted basalts, picrites and komatiites from Gorgona have a high epsilon-Hf for a given epsilon-Nd, defining a high-epsilon-Hf depleted end member that is not observed elsewhere within the Caribbean plateau sequences. This component is similar, however, in terms of Hf-Nd-Pb-He isotopes and trace elements to the depleted plume component recognised in basalts from Iceland and along the Reykjanes Ridge. We suggest that the Caribbean plateau represents the initial outpourings of the ancestral Galápagos plume. Absence of a moderately enriched, high Nb/Y component in the older Caribbean plateau (but found today on the island of Floreana) is either due to changing source compositions of the plume over its 90 Ma history, or is an artifact of limited sampling. The high-epsilon-Hf depleted component sampled by the Gorgona komatiites and depleted basalts is unique to Gorgona and is not found in the Caribbean plateau. This may be an indication of the scale of heterogeneity of the Caribbean plateau system; alternatively Gorgona may represent a separate oceanic plateau derived from a completely different Pacific plume, such as the Sala y Gomez.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. (1990) from ODP site 677 in the equatorial Pacific differs significantly from previous ones (e.g. Kominz and Pisias, 1979 doi:10.1126/science.204.4389.171; Morley and Hays, 1981 doi:10.1016/0012-821X(81)90034-0, Imbrie et al. 1984), yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values (Mankinen and Dalrymple, 1979 doi:10.1029/JB084iB02p00615; Berggren et al., 1985; Harland and Armstrong, 1989) but are in good agreement with recent Ar/Ar dating (Baksi et al., 1991; 1992 doi:10.1126/science.256.5055.356; Spell and McDougall, 1992 doi:10.1029/92GL01125). These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in delta18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal (Rostek et al., 1993 doi:10.1038/364319a0). Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the SPECMAP composite curves (Imbrie et al., 1984; Prell et al., 1986 doi:10.1029/PA001i002p00137), and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. (1990). The precession peaks found in the delta18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our delta18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 +/- 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. (1990) and recent radiochronological Ar/Ar datings on lavas (Baksi et al., 1991; 1992; Spell and McDougall, 1992). We developed a new low-latitude, Upper Pleistocene delta18O reference record by stacking and tuning the delta18O records from core MD900963 and site 677 to orbital forcing functions.