64 resultados para Permafrost Degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data set provides a high-resolution digital elevation model (DEM) of a thermokarst depression (~7 km²) on ice-complex deposits in the Arctic Lena Delta, Siberia. The DEM based on a geodetic field survey and was used for quantitative land surface analyses and detailed description of the thermokarst depression morphology. Detailed morphometrical analyses, volume calculations, and solar radiation modeling were performed and statistically analyzed by Ulrich et al. (2010) to investigate the asymmetrical thermokarst depression development and directed lake migration previously proposed by Morgenstern et al. (2008). Furthermore, the high-resolution DEM in combination with satellite data allowed detailed analyses of spatial and temporal landscape changes due to thermokarst development (Günther, 2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the combined effects of ocean acidification, temperature, and salinity on growth and test degradation of Ammonia aomoriensis. This species is one of the dominant benthic foraminifera in near-coastal habitats of the southwestern Baltic Sea that can be particularly sensitive to changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, we performed a fully crossed experiment involving three temperatures (8, 13, and 18°C), three salinities (15, 20, and 25) and four pCO2 levels (566, 1195, 2108, and 3843 µatm) for six weeks. Our results highlight a sensitive response of A. aomoriensis to undersaturated seawater with respect to calcite. The specimens continued to grow and increase their test diameter in treatments with pCO2 <1200 µatm, when Omega calc >1. Growth rates declined when pCO2 exceeded 1200 µatm (Omega calc <1). A significant reduction in test diameter and number of tests due to dissolution was observed below a critical Omega calc of 0.5. Elevated temperature (18°C) led to increased Omega calc, larger test diameter, and lower test degradation. Maximal growth was observed at 18°C. No significant relationship was observed between salinity and test growth. Lowered and undersaturated Omega calc, which results from increasing pCO2 in bottom waters, may cause a significant future decline of the population density of A. aomoriensis in its natural environment. At the same time, this effect might be partially compensated by temperature rise due to global warming.