94 resultados para POLOXAMER 407


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sediment record from Rodderberg potentially provides a climate and environmental record spanning at least the last ca 130 ka. Results from a low resolution pilot study reveal characteristic fluctuations that can be related to global climate variability as reflected in marine isotope stages and document the potential of this site for continuous and high-resolution investigations of the Middle to Late Pleistocene. Here we document the tentative lithology drilled, and show how the elemental composition can be interpreted with regard to lake level fluctuations, related redox conditions, but also to grain-size distribution and changes in lacustrine productivity. Finally, based on major lithological changes, a preliminary depth/age model is suggested that allows reassessing published luminescence ages from the same site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor, cmbsf) at six stations (70, 145, 253, 407, 770 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor, creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cmbsf of multicorer cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cmbsf, 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis. Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cmbsf, were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decline of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m). Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production), both of which support the supply of methanogenic substrates. A negative correlation of methanogenesis rates with dissolved oxygen in the bottom-near water was not obvious, however, anoxic conditions within the OMZ might be advantageous for methanogenic organisms at the sediment-water interface. Our results revealed a high relevance of surface methanogenesis on the shelf, where the ratio between surface to deep (below sulfate penetration) methanogenic activity ranged between 0.13 and 105. In addition, methane concentration profiles indicate a partial release of surface methane into the water column as well as a partial consumption of methane by anaerobic methane oxidation (AOM) in the surface sediment. The present study suggests that surface methanogenesis might play a greater role in benthic methane budgeting than previously thought, especially for fueling AOM above the sulfate-methane transition zone.