49 resultados para PHYTOLITHS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface sediments from the continental slope and rise of North-West Africa between the Canary lslands and the Cape Verde Islands are mainly composed of silt-sized material (2-63 µm). A number of sampling profiles were run normal to the coast and the composition of the silt fraction was determined quantitatively by scanning electron microscope analysis. The carbonate portion of the sediment was found to be nearly exclusively of biogenic origin. The most important contributors are planktonic foraminifers and coccoliths with minor contributions derived from pteropods. Plankton-produced biogenic opal such as diatoms and radiolarians play a very minor role. The high production rates of opal-silica plankton which exists in the surface waters of the NW-African upwelling system does not give rise to corresponding increases of opal accumulation in the bottom sediment. Benthic producers consist mainly of foraminifers and molluscs but the entire input from benthic producers is extremely small. An exception to this occurs in the prodelta sediments of the Senegal river. Downslope particle transport is indicated by the occurrence of shallow-water coralline algae, ascidian sclerites and cliona boring chips and can be traced as far down as the continental rise. The non-carbonate silt fraction mostly consists of quartz which is derived as eolian dust from the Sahara desert by the Harmattan and the NE-Trade-wind system. The percentage of carbonate in the surface sediments directly indicates the relative proportions of autochthonous biogenic components and terrigenous allochthonous quartz particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluxes of airborne freshwater diatoms (FD), phytoliths (PH), and pollen grains (PO) collected with sediment traps off Cape Blanc, northwest Africa, from 1988 till 1991 are presented. Both continental rainfall variations and wind mean strength and direction play a key role in the temporal fluctuations of the fluxes of eolian traces in the pelagic realm. Drier conditions in Northern Africa in 1987 could have preceded the high lithogenic input and moderate FD flux in 1988. The PH peak in summer 1988 was probably caused by increased wind velocity. Wetter rainy seasons of 1988/89 might have promoted a significant pollen production in summer 1989, and FD in late 1989 and early 1990, as well as contributed to the reduction of the lithogenic flux in 1989/90. Decreased fluxes of FD, PH and PO, and higher contribution of the 6-11 µm lithogenic fraction in 1991 would mainly reflect minor intensity and decreased amount of continental trade winds. Air-mass backward trajectories confirm that the Saharan Air Layer is predominantly involved in the spring/summer transport. Trade winds play a decisive role in the fall/winter months, but also contribute to the transport during late spring/summer. Origin of wind trajectories does not support a direct relationship between transporting wind-layers and material source areas in Northern Africa. High winter fluxes of eolian tracers and high amount of trade winds with continental origin in summer warn against a simplistic interpretation of the seasonal eolian signal preserved in the sediments off Cape Blanc, and the wind layer involved in its transport.