50 resultados para PCO(2) GRADIENTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes differences in plankton community structure and in chemical and physical gradients between the offshore West Greenland Current system and inland regions close to the Greenland Ice Sheet during the post-bloom in Godthabsfjorden (64° N, 51° W). The offshore region had pronounced vertical mixing, with centric diatoms and Phaeocystis spp. dominating the phytoplankton, chlorophyll (chl) a (0.3 to 3.9 µg/l) was evenly distributed and nutrients were depleted in the upper 50 m. Ciliates and heterotrophic dinoflagellates constituted equal parts of the protozooplankton biomass. Copepod biomass was dominated by Calanus spp. Primary production, copepod production and the vertical flux were high offshore. The water column was stratified in the fjord, causing chl a to be concentrated in a thin sub-surface layer. Nutrients were depleted above the pycnocline, and Thalassiosira spp. dominated the phytoplankton assemblage close to the ice sheet. Dinoflagellates dominated the protozooplankton biomass, whereas copepod biomass was low and was dominated by Pseudocalanus spp. and Metridia longa. Primary production was low in the outer part of the fjord but considerably higher in the inner parts of the fjord. Copepod production was exceeded by protozooplankton production in the fjord. The results of both physical/chemical factors and biological parameters suggest separation of offshore and fjord systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present high-resolution paleoceanographic records of surface and deep water conditions within the northern Red Sea covering the last glacial maximum and termination I using alkenone paleothermometry, stable oxygen isotopes, and sediment compositional data. Paleoceanographic records in the restricted desert-surrounded northern Red Sea are strongly affected by the stepwise sea level rise and appear to record and amplify well-known millennial-scale climate events from the North Atlantic realm. During the last glacial maximum (LGM), sea surface temperatures were about 4°C cooler than the late Holocene. Pronounced coolings associated with Heinrich event 1 (~2°C below the LGM level) and the Younger Dryas imply strong atmospheric teleconnections to the North Atlantic. Owing to the restricted exchange with the Indian Ocean, Red Sea salinity is particularly sensitive to changes in global sea level. Paleosalinities exceeded 50 psu during the LGM. A pronounced freshening of the surface waters is associated with the meltwater peaks MWP1a and MWP1b owing to an increased surface-near inflow of "normal" saline water from the Indian Ocean. Vertical delta18O gradients are also increased during these phases, indicating stronger surface water stratification. The combined effect of deglacial changes in sea surface temperature and salinity on water column stratification initiated the formation of two sapropel layers, which were deposited under almost anoxic condition in a stagnant water body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present measurements of pCO2, O2 concentration, biological oxygen saturation (Delta O2/Ar) and N2 saturation (Delta N2) in Southern Ocean surface waters during austral summer, 2010-2011. Phytoplankton biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chla) concentrations in regions of frontal mixing and sea-ice melt. pCO2 and Delta O2 /Ar exhibited large spatial gradients (range 90 to 450 µatm and -10 to 60%, respectively) and co-varied strongly with Chla. However, the ratio of biological O2 accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from photosynthetic stoichiometry, reflecting the differential time-scales of O2 and CO2 air-sea equilibration. We measured significant oceanic CO2 uptake, with a mean air-sea flux (~ -20 mmol m-2 d-1) that significantly exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean Delta N2 of +2.5 %), while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean Delta O2phys = 2.1 %). Box model calculations were able to reproduce much of the spatial variability of Delta N2 and Delta O2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g. atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria. Net community production (NCP) derived from entrainment-corrected surface Delta O2 /Ar data, ranged from ~ -40 to > 300 mmol O2 m-2 d-1 and showed good coherence with independent NCP estimates based on seasonal mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and regions of sea-ice melt with shallow mixed layer depths, reflecting the importance of mixing in controlling surface water light and nutrient availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recrystallization processes in marine sediments can alter the extent to which biogenic calcite composition serves as a proxy of oceanic chemical and isotopic history. Models of calcite recrystallization developed to date have resulted in significant insights into these processes, but are not completely adequate to describe the conditions of recrystallization. Marine sediments frequently have concentration gradients in interstitial dissolved calcium, magnesium, and strontium which have probably evolved during sediment accumulation. Realistic, albeit simplified, models of the temporal evolution of interstitial water profiles of Ca, Mg, and Sr were used with several patterns of recrystallization rate variation to predict the composition of recrystallized inorganic calcite. Comparison of predictions with measured Mg/Ca and Sr/Ca ratios in severely altered calcite samples from several Deep Sea Drilling Project sites demonstrates that models incorporating temporal variation in interstitial water composition more successfully predict observed calcite compositions than do models which rely solely on present-day interstitial water chemistry. Temporal changes in interstitial composition are particularly important in interpreting Mg/Ca ratios in conjunction with Sr/Ca ratios. Estimates of Mg distribution coefficients from previous observations in marine sediments, much lower than those in laboratory studies of inorganic calcite, are confirmed by these results. Evaluation of the effects of diagenetic alteration of biogenic calcium carbonate sediment must be a site-specific process, taking into account accumulation history, present interstitial chemistry and its variation in the past, and sample depths and ages.