293 resultados para PB-186
Resumo:
Detection of climate response to orbital forcing during Cenozoic long-term global cooling is a key to understanding the behavior of Earth's icehouse climate. Sedimentary rhythm, which is a rhythmic or cyclic variation in the sequence of sediments and sedimentary rocks, is useful for quantitative reconstruction of Earth's evolution during geological time. In this study, we attempt to (1) identify sources of natural gamma ray (NGR) emissions of core recovered during Ocean Drilling Program (ODP) Leg 186 by analyses of physical properties, major element concentrations, diatom abundances, and total organic carbon contents, (2) integrate whole-core NGR intensity of recovered core with wireline logging NGR measurements in order to construct a continuous sedimentary sequence, and (3) discuss changes in the NGR signal in the time domain. This attempt gives us preliminary information to discuss climate stability in relation to orbital forcing thorough geologic time. NGR values are obtained mainly by indirectly measuring the amount of terrigenous minerals including potassium and related elements in the sediments. NGR intensity is also affected by high porosity, which in these sediments was related to the amount of diatom valves. NGR signals might be a proxy of the intensity of the East Asian monsoon off Sanriku. A continuous sedimentary record was constructed by integration of the whole-core NGR intensity measured in sediments obtained from the drilled holes with that measured directly in the borehole by wireline logging, then using a stratigraphic age model to convert to a time series covering 1.3-9.7 Ma with a short break at ~5 Ma. High sedimentation rate (H) stages were identified in the sequence, related to intervals of low-amplitude precession and eccentricity variations. The transition of the dominant periodicities through the four H stages may correlate to major shifts in the climate system, including the onset of major Northern Hemisphere glaciation, the initial stage of the East Asian monsoon intensification, and the onset of the East Asian monsoon with uplift of the Himalayas and the Tibetan Plateau.
Resumo:
The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north-south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions. Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd-Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. (1985, doi:10.1016/0016-7037(85)90082-1) and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3. The north-south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Delta8/4 values that characterize the Lesser Antilles arc.
Resumo:
Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.
Resumo:
The monograph gives results of studies of sediments and rocks collected from D/S Glomar Challenger in the Pacific Ocean. These studies have been based on the lithological facial analysis applied for the first time for identificating genesis of ocean sediments. These results include new ideas on formation of the Earth's sedimentary cover and can be used for constructing regional and global schemes of ocean paleogeography, reconstructing some structures, correlating sedimentation on continents and in oceans, estimating perspectives of oil- and gas-bearing deposits and ore formation. The monograph also gives the first petrographic classification of organic matter in black shales.
Resumo:
Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 µg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (deltaR) is calculated by comparing the foraminifera 14C determinations to a PSV & Pb age model. This deltaR is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound.
Resumo:
A suite of volcanic and volcaniclastic rocks selected from Ocean Drilling Program Leg 134 Sites 832 and 833 in the North Aoba Basin (Central New Hebrides Island Arc) has been analyzed for Sr, Nd, and Pb isotopes to investigate the temporal evolution of the arc magmatism. This arc shows two unusual features with respect to other western Pacific arcs: 1) subduction is eastdirected; and 2) a major submarine ridge, the d'Entrecasteaux Zone, has been colliding almost perpendicularly with the central part of the arc since about 3 Ma. Volcanic rocks from the upper parts of both holes, generated during the last 2 m.y., show higher 87Sr/86Sr and significantly lower 206Pb/204Pb and 143Nd/144 Nd values compared to those volcanics erupted before the collision of this ridge, as represented by samples from the lower section of both holes, or remote from the collisional region, in the southern part of the arc. These isotopic differences in the respective mantle sources cannot be interpreted in terms of geochemical input into the mantle wedge induced by the collision itself. Rather, they require long term (>500 m.y.) enrichment processes. The enriched mantle source could be, on a regional scale, a DUPAL-type reservoir with strong similarities to the source of Indian Ocean basalts. Isotopic analyses of drilled rocks from the DEZ show that the anomalous, enriched mantle component is not derived from this feature. We currently cannot identify a source for this enriched component, but note that it also exists in Lau Basin backarc volcanics, lavas from the West Philippine Sea, and also some lavas from the Mariana-Izu-Bonin arc.
Resumo:
We present the initial results of a U-Th-Pb zircon ion-microprobe investigation on samples from the Central Belt of Taimyr, in order to constrain its tectono-magmatic evolution. The zircon samples are from a deformed twomica granite (Faddey Massif), deformed metamorphosed gabbroic dike entrained as pods and lenses within metamorphosed tholeiitic basalts of the Kunar-Mod volcanic suite (Klyaz'ma River region), a metamorphosed rhyolite of the same volcanic suite overlying the basic metavolcanic rocks, as well as an undeformed dolerite dike which intrudes the metamorphosed Kunar-Mod basic volcanic rocks. Preliminary results on zircons from the two-mica granite suggest a crystallization age of ~630 Ma for this rock, with inheritance from assimilated crust 840 Ma to 1.1 Ga in age. In the Klyaz'ma River region, zircons from the meta-rhyolite yield a concordant age of -630 Ma. Zircons from the entrained metagabbroic dikes have so far yielded an age of -615 Ma (1 grain), as well as Archean ages (5 grains, concordant at 2.6-2.8 Ga). It seems likely that the Archean grains represent assimilation of older crustal material. Zircons from the post-tectonic dolerite dike have a bimodal age distribution. A well-defined younger age of 281 ±9 Ma is interpreted to represent the crystallization age of the dike, while older, concordant ages of 2.6-2.9 Ga likely represent assimilation of Archean crust (Siberian craton at depth). Several important conclusions can be drawn from the data. (1) The mafic and felsic lithologies of the Kunar-Mod volcanic suite are genetically related and should be the same age. Ages of-630 Ma (meta-rhyolite) and -615 Ma (metagabbroic dikes representing the latest stage of mafic magmatism associated the Kunar-Mod suite) suggest that these lithologies may be the same age, but more data are required to confirm this hypothesis. (2) The 630 Ma two-mica granite is similar in age to the time of high-grade metamorphism, suggesting that syntectonic granite emplacement accompanied obduction of the accretionary Central Belt to the Siberian craton. (3) An Early Permian age is well defined for the undeformed dolerite dike. Dolerite dikes occur across the whole of Taimyr, but are deformed to the south. If related, this single magmatic event pre-dates Permo-Triassic Siberian trap magmatism. Furthermore, it suggests that deformation was localized to southeastern Taimyr.