52 resultados para Organic input


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopic compositions of carbon and nitrogen and organic carbon content of sediments ranging from the Pliocene to the Pleistocene-Holocene in age from the Oman Margin (ODP Sites 724 and 725) are reported. In general, the organic carbon content is greater than 2% at Site 724. Prior to the Pleistocene-Holocene at this site, sediments with higher content of organic matter were deposited owing to favorable preservation conditions and/or higher productivity. In the Pleistocene, lower amounts of organic matter have been preserved; this material generally has more enriched nitrogen isotopic compositions. This may indicate intensification of the Oxygen Minimum Zone and denitrification with the onset of the Pleistocene. A correlation of carbon isotope content of these sediments with oxygen isotope stages at Site 724 indicates an enrichment in 13C during glacial events. Based on the stable isotope evidence of both carbon and nitrogen, there does not appear to be major input of terrigenous-derived allochthonous material in this marine environment. The timing and extent of monsoon winds on the productivity of this region are not evident, but require further studies for collaborative interpretation of small-scale features in the isotopic and carbon content of this environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolarian-based paleoceanographic reconstructions generally use the abundance of selected radiolarian species. However, the recent focus on the opal flux and the development of isotope measurements in biogenic opal and the organic matter embedded in it demands a better knowledge of the origin of the opal. We present here an estimation of the opal content of the skeleton of 63 radiolarian species from two sites in the Southern Ocean. The skeletons are modelled as associations of simple geometrical shapes, and the volume thus obtained is combined with opal density to obtain the amount of opal. These data are, thus, used to determine the most important opal carriers in the radiolarian assemblage in both cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C/m**2/d. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C/m**2/d (mean 3.7 mg C/m**2/d), whereas fluxes on the East Greenland shelf are considerably higher, 9.1-22.5 mg C/m**2/d. On the Norwegian continental slope Corg fluxes of 3.3-13.9 mg C/m**2/d (mean 6.5 mg C/m**2/d) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004-1.1 mg C/cm**3/a at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03-0.6/a. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochtonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial rates of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents, indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the UK'37 based on long-chain alkenones, and the TEX86 based on isoprenoid GDGTs. Both, UK'37 and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20°C, likely implying different seasonal and regional imprints on the temperature signal. While alkenone-based temperature estimates reliably reflect modern SST even at the low temperature end, large temperature residuals are observed for the polar ocean using the TEX86 index. 230Th-normalized burial rates of alkenones are highest close to the Subtropical Front and are positively related to lithogenic fluxes throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front is not related with dust flux but may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to examine the spatial distribution of organic-walled dinoflagellate cysts (dinocysts) in recent sediments related to environmental conditions in the water column, thirty-two surface sediment samples from the NW African upwelling region (20-32°N) were investigated. Relative abundances of the dinocyst species show distinct regional differences allowing the separation of four hydrographic regimes. (1) In the area off Cape Ghir, which is characterized by most seasonal upwelling and river discharge, Lingulodinium machaerophorum strongly dominates the associations which are additionally characterized by cysts of Gymnodinium nolleri, cysts of Polykrikos kofoidii and cysts of Polykrikos schwartzii. (2) Off Cape Yubi, a region with increasing perennial upwelling, L. machaerophorum, Brigantedinium spp., species of the genus Impagidinium and cysts of Protoperidinium stellatum occur in highest relative abundances. (3) In coastal samples between Cape Ghir and Cape Yubi, Gymnodinium catenatum, species of the genus Impagidinium, Nematosphaeropsis labyrinthus, Operculodinium centrocarpum, cysts of P. stellatum and Selenopemphix nephroides determine the species composition. (4) Off Cape Blanc, where upwelling prevails perennially, and at offshore sites, heterotrophic dinocyst species show highest relative abundances. A Redundancy Analysis reveals fluvial mud, sea surface temperature and the depth of the mixed layer in boreal spring (spring) as the most important parameters relating to the dinocyst species association. Dinocyst accumulation rates were calculated for a subset of samples using well-constrained sedimentation rates. Highest accumulation rates with up to almost 80.000 cysts cm**-2 ky**-1 were found off Cape Ghir and Cape Yubi reflecting their eutrophic upwelling filaments. A Redundancy Analysis gives evidence that primary productivity and the input of fluvial mud are mostly related to the dinocyst association. By means of accumulation rate data, quantitative cyst production of individual species can be considered independently from the rest of the association, allowing autecological interpretations. We show that a combined interpretation of relative abundances and accumulation rates of dinocysts can lead to a better understanding of the productivity conditions off NW Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic matter origins are inferred from carbon isotope ratios (delta13C) in recent continental shelf sediments and major rivers from 465 locations from the north Bering-Chukchi-East Siberian-Beaufort Sea, Arctic Amerasia. Generally, there is a cross-shelf increase in delta13C, which is due to progressive increased contribution seaward of marine-derived organic carbon to surface sediments. This conclusion is supported by the correlations between sediment delta13C, OC/N, and delta15N. The sources of total organic carbon (TOC) to the Amerasian margin sediments are primarily from marine water-column phytoplankton and terrigenous C3 plants constituted of tundra taiga and angiosperms. In contrast to more temperate regions, the source of TOC from terrigenous C4 and CAM plants to the study area is probably insignificant because these plants do not exist in the northern high latitudes. The input of carbon to the northern Alaskan shelf sediments from nearshore kelp community (Laminaria solidungula) is generally insignificant as indicated by the absence of high sediment delta13C values (-16.5 to -13.6 per mil) which are typical of the macrophytes. Our study suggests that the isotopic composition of sediment TOC has potential application in reconstructing temporal changes in delivery and accumulation of organic matter resulting from glacial-interglacial changes in sea level and environments. Furthermore, recycling and advection of the extensive deposits of terrestrially derived organic matter from land, or the wide Amerasian margin, could be a mechanism for elevating total CO2 and pCO2 in the Arctic Basin halocline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the reconstruction of sea-ice variability, a biomarker approach which is based on (1) the determination of sea-ice diatom-specific highly-branched isoprenoid (IP25) and (2) the coupling of phytoplankton biomarkers and IP25 has been used. For the first time, such a data set was obtained from an array of two sediment traps deployed at the southern Lomonosov Ridge in the central Arctic Ocean at water depth of 150 m and 1550 m and recording the seasonal variability of sea ice cover in 1995/1996. These data indicate a predominantly permanent sea ice cover at the trap location between November 1995 and June 1996, an ice-edge situation with increased phytoplankton productivity and sea-ice algae input in July/August 1996, and the start of new-ice formation in late September. The record of modern sea-ice variability is then used to better interpret data from sediment core PS2458-4 recovered at the Laptev Sea continental slope close to the interception with Lomonosov Ridge and recording the post-glacial to Holocene change in sea-ice cover. Based on IP25 and phytoplankton biomarker data from Core PS2458-4, minimum sea-ice cover was reconstructed for the Bølling/Allerød warm interval between about 14.5 and 13 calendar kyr BP, followed by a rapid and distinct increase in sea-ice cover at about 12.8 calendar kyr BP. This sea-ice event was directly preceded by a dramatic freshwater event and a collapse of phytoplankton productivity, having started about 100 years earlier. These data are the first direct evidence that enhanced freshwater flux caused enhanced sea-ice formation in the Arctic at the beginning of the Younger Dryas. In combination with a contemporaneous, abrupt and very prominent freshwater/meltwater pulse in the Yermak Plateau/Fram Strait area these data may furthermore support the hypothesis that strongly enhanced freshwater (and ice) export from the Arctic into the North Atlantic could have played an important trigger role for the onset of the Younger Dryas cold reversal. During the Early Holocene, sea-ice cover steadily increased again (ice-edge situation), reaching modern sea-ice conditions (more or less permanent sea-ice cover) probably at about 7-8 calendar kyr BP.