311 resultados para Oman Ophiolite
Resumo:
Data on amounts of various functional groups, i.e. aldehyde, acid, ester, alcohol, thiol and aromatic groups in several fractions of low-polarity dissolved organic matter are presented. An assumption that this organic matter is part of the lipid fraction is not confirmed. Amount of aromatic compounds in waters of the Northwest Indian Ocean is estimated to be about 1000 times higher than quantity of aromatic hydrocarbons discharged into the ocean each year in petroleum and petroleum products.
Resumo:
Historically, the Holocene has been considered an interval of relatively stable climate. However, recent studies from the northern Arabian Sea (Netherlands Indian Ocean Program 905) suggested high-amplitude climate shifts in the early and middle Holocene based on faunal and benthic isotopic proxy records. We examined benthic foraminiferal faunal and stable isotopic data from Ocean Drilling Program (ODP) Site 723 and total organic carbon data from ODP Site 724, Oman Margin (808 and 593 m water depths, respectively). At Site 723 the mid-Holocene shift in d18O values of infaunal benthic species Uvigerina peregrina (1.4 per mil) is 3 times larger than that of epifaunal benthic species Cibicides kullenbergi recorded at Site NIOP 905 off Somalia. However, none of the five other benthic species we measured at Hole 723A exhibits such a shift in d18O. We speculate that the late Holocene d18O decrease in U. peregrina represents species-specific changes in ecological habitat or food preference in response to changes in surface and deep ocean circulation. While the stable isotopic data do not appear to indicate a middle Holocene climatic shift, our total organic carbon and benthic faunal assemblage data do indicate that the early Holocene deep Arabian Sea was influenced by increased ventilation perhaps by North Atlantic Deep Water and/or Circumpolar Deep Water incursions into the Indian Ocean, leading to remineralization of organic matter and a relatively weak early Holocene oxygen minimum zone in the northwest Arabian Sea in spite of strong summer monsoon circulation.
Resumo:
Compressional wave velocities measured in gabbroic rocks and metabasites recovered from Site 293 of Leg 31 in the Philippine Sea (on the Central Basin Fault) are correlative with seismic velocities determined for Layer 3. The lower crustal origin for these rocks suggested by this data is further supported by the similarity between these samples, dredge haul samples from fracture zones in the main ocean basins and rocks found in ophiolite complexes. These plutonic rocks were possibly introduced to the sea floor by movements along the Central Basin Fault, a major tectonic feature in the Philippine Sea, or formed as part of new ocean crust within a leaky transform fault.
Resumo:
Sites 800 and 801 in the Pigafetta Basin allow the sedimentary history over the oldest remaining Pacific oceanic crust to be established. Six major deposition stages and events are defined by the main lithologic units from both sites. Mineralogical and chemical investigations were run on a large set of samples from these units. The data enable the evolution of the sediments and their depositional environments to be characterized in relation to the paleolatitudinal motion of the sites. The upper part of the basaltic crust at Site 801 displays a complex hydrothermal and alteration evolution expressed particularly by an ochre siliceous deposit comparable to that found in the Cyprus ophiolite. The oldest sedimentary cover at Site 801 was formed during the Callovian-Bathonian (stage 1) with red basal siliceous and metalliferous sediments similar to those found in supraophiolite sequences, and formed near an active ridge axis in an open ocean. Biosiliceous sedimentation prevailed throughout the Oxfordian to Campanian, with rare incursions of calcareous input during the middle Cretaceous (stages 2, 4, and 5). The biosiliceous sedimentation was drastically interrupted during the Aptian-Albian by thick volcaniclastic turbidite deposits (stage 3). The volcanogenic phases are pervasively altered and the successive secondary mineral parageneses (with smectites, celadonite, clinoptilolite, phillipsite, analcime, calcite, and quartz) define a "mineral stratigraphy" within these deposits. From this mineral stratigraphy, a similar lithologic layer is defined at the top of the Site 800 turbidite unit and the bottom of the Site 801 turbidite unit. Then, the two sites appear to have been located at the same distal distance from a volcanic source (hotspot). They crossed this locality, at about 10°S, at different times (latest Aptian for Site 800, middle Albian for Site 801). The Cretaceous siliceous sedimentation stopped during the late Campanian and was followed by deposition of Cenozoic pelagic red clay (stage 6). This deep-sea facies, which formed below the carbonate compensation depth, contains variable zeolite authigenesis in relation to the age of deposition, and records the global middle Cenozoic hiatus events. At the surface, the red clay from this part of the Pacific shows a greater detrital component than its equivalents from the central Pacific deep basins.
Resumo:
Surface and upper-layer pollution of seas and oceans by crude oil and refinery products is under study by investigators in many countries. The Intergovernmental Oceanographic Commission (IOC) and World Meteorological Organization (WMO) have prepared an international experimental project that is to be carried out within the framework of the Integrated Global Oceanic Station System (IGOSS). The purpose of the project is to prepare a picture of distribution and dynamics of oil pollution. Parameters to be observed include: oil patches (slicks), floating lumps of tar on the surface, and hydrocarbons emulsified and dissolved in water. Cruise 22 of R/V Akademik Kurchatov took the ship through regions being the most suitable for pollution studies. They were conducted from March through June 1976. On the cruise, oil slicks were observed visually by a procedure recommended by the international program. Areas of the slicks were determined from speed of the ship and time required to cross them. Surface samples were taken along the path of the ship for determination of concentrations of dissolved and emulsified hydrocarbons in water. In addition, samples were taken from deep water by a 7-liter vinyl water bottle at 17 stations. Hydrocarbons present in the samples were extracted immediately with carbon tetrachloride. Final determination of hydrocarbons was made by infrared spectrophotometry. This method is currently accepted in the Soviet Union in an arbitration capacity for determination of petroleum products dissolved and emulsified in sea water. Infrared spectrophotometry is used to determine hydrocarbons containing methyl and methylene groups, but they are not identified as to origin.
Resumo:
This report includes the petrographic description and reviews the distribution of lithic clasts in sediments drilled during Leg 180 in the Woodlark Basin (southwest Pacific). The lithic clasts include (1) metamorphic rocks; (2) granites; (3) serpentinites, gabbros, dolerites, and basalts likely derived from the Papuan ophiolite belt; (4) rare alkaline volcanites reworked in middle Miocene sediments; (5) medium- to high-K calc-alkaline island arc volcanites, in part as reworked clasts, and explosive products deposited by fallout or reworked by turbiditic currents; and (6) rare sedimentary fragments. At the footwall sites the clast assemblage evidences the association of dolerites and evolved gabbroic rocks; the serpentinite likely pertaining to the same ophiolitic complex are likely derived from onland outcrops and transported by means of turbidity currents. On the whole, extensional tectonics active at least since the middle Pliocene can be inferred. The calc-alkaline volcanism is in continuity with the arc-related products from the Papua Peninsula and D'Entrecasteaux Islands and with the latest volcanics of the Miocene Trobrian arc. However, the medium- to high-K and shoshonitic products do not display a significant temporal evolution within the stratigraphic setting. Lava clasts, volcanogenic grains, and glass shards are associated with turbidity currents, whereas in the Pliocene of northern margin the increasing frequency of tephra (glass shards and vesicular silicic fragments) suggests more explosive activity and increasing contribution to the sediments from aerial fallout materials. Evidence of localized alkalic volcanism of presumable early to middle Miocene age is a new finding. It could represent a rift phase earlier than or coeval to the first opening of the Woodlark Basin or, less probably, could derive from depositional trajectories diverted from an adjacent basin.
Resumo:
The Kamchatka Peninsula of northeastern Russia is located along the northwestern margin of the Bering Sea and consists of zones of complexly deformed accreted terranes. Along the northern portion of the peninsula, progressing from then orthwestem Bering Sea inland the Olyutorskiy, Ukelayat, and Koryak superterranes area acreted to the Okhotsk-Chukotsk volcanic-plutonic bell in northern-most Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlap terranes and units of the Koryak superterrane and constrains their accretion time with this region of the North America plate. Ophiolite complexes, widespread within the Koryak superterrane, are associated with serpentinite melanges and some of the ophiolite terranes include large portions of weakly serpentinized hyperbasites, layered gabbro, sheeted dikes, and pillow basalts outcropping as internally coherent blocks within a sheared melange matrix. Interpretation of magnetic anomalies allow the correlation of the Ukelayat with the West Kamchatka and Sredinny Range superterranes. The Olyutorskiy composite terrane may be correlated with the central and southern Kamchatka Peninsula Litke, Eastern Ranges and Vetlov composite terranes. The most "out-board" of the central and southern Kamchatka Peninsula terranes is the Kronotsky composite terrane, weil exposed along the Kamchatka, Kronotsky and Shipunsky Capes. Using regional geological constraints, paleomagnetism, and plate kinematic models for the Pacific basin a regional model can be proposed in which accretion of the Koryak composite terrane to the North America plate occurs during the Campanian-Maastrichtian, followed by the accretion of the Olyutorskiy composite terrane in the Middle Eocene, and the Late Oligocene-Early Miocene collision of the Kronotsky composite terrane. A revised age estimate of a key overlapping sedirnentary sequence of the Koryak superterrane, calibrated with new Ar40/Ar39 data, supports its Late Cretaceous accretion age.
Resumo:
The Galicia margin lies northwest of the Iberian Peninsula and is a passive ocean margin with thin sedimentary cover. Altered peridotite was recovered from ODP Site 637, on the north-trending ridge at the western edge of the margin, near the oceanic/continental crust boundary. The altered ultramafics were originally clinopyroxene-rich upper mantle harzburgites and are now extensively serpentinized (>85%) and cut by very late-stage carbonate veins. Despite pervasive late, low-temperature alteration, evidence of early, high-temperature alteration remains. Alteration is apparent as (1) amphibole rims on clinopyroxene (>800°C), (2) hornblende + tremolite (450° to 800°C), (3) breakdown of hornblende to form tremolite + chlorite (<450°C), (4) zoned Cr-spinels, (5) hydration of orthopyroxene and olivine to serpentine, (6) serpentine veins, (7) replacement of pyroxene and olivine by calcite, and (8) calcite veins and vugs. Both the relict igneous and the high-temperature alteration minerals (amphiboles) show evidence of brittle deformation. Subsequent low-temperature alteration veins and minerals are deformed only in faulted and brecciated zones. This textural evidence suggests that the low-temperature alteration occurred after emplacement of the ultramafics at the surface. Serpentine fills tension fractures in orthopyroxene, and both serpentine and calcite fill tension cracks in olivine. The high-temperature alterations in these samples are similar to those found in oceanic fracture zone and ophiolite ultramafics. This widespread occurrence of high-temperature alteration suggests that hot fluids were pervasive in these ultramafic blocks. Localization of high-temperature alteration close to large carbonate veins suggests channelization of the late, low-temperature fluids. Earlier hydrations (e.g., high-temperature alterations and serpentinization) were pervasive.
Resumo:
We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.
Resumo:
At Sites 566, 567, and 570 of Leg 84, ophiolitic serpentinite basement was covered by a sequence of serpentinitic mud that was formed by weathering of the serpentinites under sea- or pore-water conditions. Several mineralogical processes were observed: (1) The serpentinitic mud that consists mainly of chrysotile was formed from the lizardite component of the serpentinites by alteration. (2) Slightly trioctahedral smectites containing nonexpandable mica layers, trioctahedral smectites containing nonexpandable chlorite layers, and swelling chlorites were presumably formed from detrital chlorite and/or serpentine. (3) The occurrence of tremolite, chlorite, analcime, and talc can be attributed to reworking of gabbroic ophiolite rocks. (4) Dolomite, aragonite, and Mg-calcite, all authigenic, occur in the serpentinitic mud.
Resumo:
Upwelling occurs during the summer off the coast of Oman when the Asian monsoon produces strong southwest winds in the northern Arabian Sea. Ekman transport driven by the southwest monsoon winds upwells cool nutrient-rich waters along the coast which contrast with the warmer, less productive waters offshore. The spatial pattern of foraminifers in the sediments corresponds with the coastal environmental gradient. The upwelling species Globigerina bulloides dominates the sediment assemblage on the continental margin, while Globigerinita glutinata is more abundant offshore, creating a coastal gradient in fauna. We reconstructed the upwelling faunal gradient using high resolution oxygen isotope stratigraphy to correlate between Hole 723B on the Oman Margin, and a core from the Owen Ridge (RC2761), adjacent Site 722. A gradient similar in magnitude to the present, implying upwelling conditions similar to today existed during each interglacial time during the late Pleistocene interval from 0 to 300 k.y. The gradient was reduced or absent during glacial times implying diminshed southwest winds along the coast of Oman, not strong enough to produce an environmental gradient between the coast and offshore sites.