50 resultados para Mid-rise building


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report relative paleointensity proxy records from four piston cores collected near the Agulhas Ridge and Meteor Rise (South Atlantic). The mean sedimentation rate of the cores varies from 24 cm/kyr to 11 cm/kyr. The two cores with mean sedimentation rates over 20 cm/kyr record positive remanence inclinations at 40-41 ka coeval with the Laschamp Event. Age models are based on oxygen isotope data from three of the cores, augmented by radiocarbon ages from nearby Core RC11-83, and by correlation of paleointensity records for the one core with no oxygen isotope data. The relative paleointensity proxy records are the first from the South Atlantic and from the high to mid-latitude southern hemisphere. Prominent paleointensity lows at ?40 ka and ?65 ka, as well as many other features, can be correlated to paleointensity records of comparable resolution from the northern hemisphere. The records are attributable, in large part, to the global-scale field, and therefore have potential for inter-hemispheric correlation at a resolution difficult to achieve with isotope data alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiocarbon-age measurements on single species of foraminifera from a core on the Ceara Rise demonstrate the importance of the joint effect of bioturbation and variable rain abundance of foraminifera. The relatively high mixed layer ages for Pulleniatina obliquiloculata reflect, at least in part, an early Holocene peak in its abundance while the relatively young ages for Globorotalia menardii reflect the delay until mid Holocene of its reappearance in the Atlantic Ocean. These results clearly demonstrate that core-top sediment samples need not be representative foraminifera falling from today's surface ocean. Rather, at least on the Ceara Rise, such samples consist of a composite of changing species groupings. These results also reconfirm the pitfalls associated with attempts to reconstruct the radiocarbon age of deep ocean water on the basis of benthic-planktonic foraminiferal age differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new isotopic and micropaleontological data from a depth transect on Shatsky Rise that record the response of the tropical Pacific to global biotic and oceanographic shifts during the mid-Maastrichtian. Results reveal a coupling between the upper ocean, characterized by a weak thermocline and low to intermediate productivity, and intermediate waters. During the earliest Maastrichtian, oxygen and neodymium isotope data suggest a significant contribution of relatively warm intermediate water from the North Pacific. Isotopic shifts through the early Maastrichtian suggest that this warmer water mass was gradually replaced by cooler waters originating in the Southern Ocean. Although the cooler water mass remained dominant through the remainder of the Maastrichtian, it was displaced intermittently at shallow intermediate depths by North Pacific intermediate water. The globally recognized "mid-Maastrichtian event" ~69 Ma, manifested by the brief appearance of abundant inoceramid bivalves over shallow portions of Shatsky Rise, is characterized by an abrupt increase (~2°-3°C) in sea surface temperatures, a greater flux of organic matter out of the surface ocean, and warmer (~4°C) intermediate waters. Results implicate simultaneous changes in surface waters and the sources/distribution patterns of intermediate water masses as an underlying cause for widespread biotic and oceanographic changes during mid-Maastrichtian time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ?90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS**- production.