48 resultados para Methane production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolabeled products were formed from labeled substrates during anaerobic incubation of sediments from Sites 618, 619, and 622. One set of experiments formed 14CO2, 14CH4, and 35SH2 from 2-14C-acetate and 35S-sulfate; a second set formed 14CH4 from 14C-methylamine or 14C-trimethylamine. Levels of 14CO2 and 35S2 formed were two to three orders of magnitude greater than 14CH4. Production of 14CH4 by Deep Sea Drilling Project (DSDP) sediments was four to five orders of magnitude less than that formed by anoxic San Francisco Bay sediment. However, incubation of Site 622 sediment slurries under H2 demonstrated production of small quantities of CH4. These results indicate that DSDP sediments recovered from 4 to 167 m sub-bottom (age 85,000-110,000 yr.) harbor potential microbial activity which includes sulfate reducers and methanogens. Analysis of pore waters from these DSDP sites indicates that bacterial substrates (acetate, methylated amines) were present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rate of CO2 assimilation was determined above the Broken Spur and TAG active hydrothermal fields for three main ecosystems: (1) hydrothermal vents; (2) 300 m near-bottom layer of plume water; and (3) bottom sediments. In water samples from warm (40-45°C) vents assimilation rates were maximal and reached 2.82-3.76 µg C/l/day. In plume waters CO2 assimilation rates ranged from 0.38 to 0.65 µg C/l/day. In bottom sediments CO2 assimilation rates varied from 0.8 to 28.0 µg C/l/day, rising up to 56 mg C/kg/day near shrimp swarms. In the most active plume zone of the long-living TAG field bacterial production of organic matter (OM) from carbonic is up to 170 mg C/m**2/day); production of autotrophic process of bacterial chemosynthesis reaches about 90% (156 mg C/m**2/day). Thus, chemosynthetic production of OM in September-October is almost equal to that of photosynthetic production in the oceanic region. Bacterial production of OM above the Broken Spur hydrothermal field is one order lower and reaches only 20 mg C/m**2/day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.