63 resultados para Mass extinction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 207, on the Demerara Rise in the western tropical North Atlantic, recovered multiple Cretaceous-Paleogene boundary sections containing an ejecta layer. Sedimentological, geochemical, and paleontological changes across the boundary closely match patterns expected for a mass extinction caused by a single impact. A normally graded, ~2-cm-thick bed of spherules that is interpreted as a primary air-fall deposit of impact ejecta occurs between sediments of the highest Cretaceous Plummerita hantkeninoides foraminiferal zone and the lowest Paleogene P0 foraminiferal zone. There are no other spherule layers in the section. In addition to extinction of Cretaceous taxa, foraminiferal abundance drops from abundant to rare across the boundary. Ir concentrations reach a maximum of ~1.5 ppb at the top of the spherule bed, and the Ir anomaly is associated with enrichment in other siderophile elements. We attribute the unusually well-preserved and relatively simple stratigraphy to the fact that Demerara Rise was close enough (~4500 km) to the Chicxulub impact site to receive ~2 cm of ejecta, yet was far enough away (and perhaps sheltered by the curve of northern South America) to have been relatively unaffected by impact-induced waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the best-studied aspects of the K-Pg mass extinction is the decline and subsequent recovery of open ocean export productivity (e.g., the flux of organic matter from the surface to deep ocean). Some export proxies, including surface-to-deep water d13C gradients and carbonate sedimentation rates, indicate a global decline in export productivity triggered by the extinction. In contrast, benthic foraminiferal and other geochemical productivity proxies suggest spatially and temporally heterogeneous K-Pg boundary effects. Here we address these conflicting export productivity patterns using new and compiled measurements of biogenic barium. Unlike a previous synthesis, we find that the boundary effect on export productivity and the timing of recovery varied considerably between different oceanic sites. The northeast and southwest Atlantic, Southern Ocean, and Indian Ocean records saw export production plummet and remain depressed for 350 thousand to 2 million years. Biogenic barium and other proxies in the central Pacific and some upwelling or neritic Atlantic sites indicate the opposite, with proxies recording either no change or increased export production in the early Paleocene. Our results suggest that widespread declines in surface-to-deep ocean d13C do not record a global decrease in export productivity. Rather, independent proxies, including barium and other geochemical proxies, and benthic community structure, indicate that some regions were characterized by maintained or rapidly recovered organic flux from the surface ocean to the deep seafloor, while other regions had profound reductions in export productivity that persisted long into the Paleocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A substantial extinction of megafauna occurred in Australia between 50 and 45 kyr ago, a period that coincides with human colonization of Australia. Large shifts in vegetation also occurred around this time, but it is unclear whether the vegetation changes were driven by the human use of fire-and thus contributed to the extinction event-or were a consequence of the loss of megafaunal grazers. Here we reconstruct past vegetation changes in southeastern Australia using the stable carbon isotopic composition of higher plant wax n-alkanes and levels of biomass burning from the accumulation rates of the biomarker levoglucosan from a well-dated sediment core offshore from the Murray-Darling Basin. We find that from 58 to 44 kyr ago, the abundance of plants with the C-4 carbon fixation pathway was generally high-between 60 and 70%. By 43 kyr ago, the abundance of C-4 plants dropped to 30% and biomass burning increased. This transient shift lasted for about 3,000 years and came after the period of human arrival and directly followed megafauna extinction at 48.9-43.6 kyr ago. We conclude that the vegetation shift was not the cause of the megafaunal extinction in this region. Instead, our data are consistent with the hypothesis that vegetation change was the consequence of the extinction of large browsers and led to the build-up of fire-prone vegetation in the Australian landscape.