56 resultados para Long Valley Region (Mono County)
Resumo:
The grain sizes of gas hydrate crystallites are largely unknown in natural samples. Single grains are hardly detectable with electron or optical microscopy. For the first time, we have used high-energy synchrotron diffraction to determine grain sizes of six natural gas hydrates retrieved from the Bush Hill region in the Gulf of Mexico and from ODP Leg 204 at the Hydrate Ridge offshore Oregon from varying depth between 1 and 101 metres below seafloor. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. Gas hydrate grain sizes were measured at the Beam Line BW 5 at the HASYLAB/Hamburg. A 'moving area detector method', originally developed for material science applications, was used to obtain both spatial and orientation information about gas hydrate grains within the sample. The gas hydrate crystal sizes appeared to be (log-)normally distributed in the natural samples. All mean grain sizes lay in the range from 300 to 600 µm with a tendency for bigger grains to occur in greater depth. Laboratory-produced methane hydrate, aged for 3 weeks, showed half a log-normal curve with a mean grain size value of c. 40 µm. The grains appeared to be globular shaped.
Resumo:
Continental margin sediments off Nova Scotia accumulate at high rates (up to 360 cm/kyr) and contain a history of millennial-scale environmental changes which are dominated by the proximity of the Laurentide ice sheet during the latest Quaternary. Using stable isotope ratios of oxygen, accelerator mass spectrometer radiocarbon dating, micropaleontology, and sedimentology, we document these changes in six piston cores ranging in water depth from ab. 450 to ab. 4300 m. We find that maximum d18O in N. pachyderma occurred about 15 ka and preceded the maximum abundance of this species in these cores by ab. 1000 years. Between 13 and 14 ka we find a second peak in abundance of N. pachyderma, minimum d18O, and two pulses of ice rafting. The sediment lithology supports terrestrial studies which indicate that there was a general withdrawal of ice beyond the upper Paleozoic and Mesozoic red beds by 14 ka in southeastern Canada, so the ice rafting events between 13 and 14 ka probably reflect ice stream activity in the St. Lawrence valley. The Younger Dryas event is recognized as a peak in abundance of N. pachyderma and ice rafting (dated as ab. 11.3 ka), but meltwater discharge to the Gulf of St. Lawrence was either too small or occurred over too long a time to leave a distinct d18O minimum off Nova Scotia. At 7.1 ka, in the middle of Holocene warming, we find a third peak in abundance of N. pachyderma and another d18O minimum but no ice rafting. We interpret these data as evidence of a late-occurring meltwater event which, if correct, could have originated in the Great Lakes, in the Labrador-Ungava region, or in both. The final millennial-scale phenomenon off Nova Scotia is the onset of "Neoglaciation," marked by increased ice rafting and increased % N. pachyderma beginning about 5 kyr ago.
Resumo:
The tight coupling between the atmospheric and oceanic circulation in the equatorial Atlantic region makes this area an important region for paleoclimatic research. Previous studies report the occurrence of large amounts of terrigenous material and soil organic carbon (SOC) within the marine sediments of the eastern Gulf of Guinea. We use the accumulation rates (AR) of branched glycerol dialkyl glycerol tetraethers (GDGTs) to identify variations in SOC delivery to the Niger Fan over the last 35 ka, and compare these records to long-chain n-alkanes as a proxy for higher plant material, to an inorganic proxy for terrigenous input (aluminum AR) and to indicators for the marine productivity (AR of carbonate and crenarchaeol). In addition, sea surface temperatures (SSTs) are calculated based on the TEX86H index and environmental factors affecting the SST-reconstructions are discussed. Our results indicate that Al AR are closely connected to the rate of mean sea level change after 15 ka BP, with an additional influence of the increased monsoonal precipitation and extended vegetation cover corresponding to the African Humid Period (14.8-5.5 ka BP). Branched GDGT AR appears to be determined by shelf erosion in addition to the interplay of monsoonal precipitation and vegetation cover controlling soil erosion. Long-chain n-alkane concentrations clearly show a different trend than the other proxies, which might be due to their predominant eolian transport. Paleo-SSTs show a clear shift from colder temperatures during the last glacial period (20-22 °C) to warmer temperatures during the Holocene (24-26 °C). However, TEX86H-based SSTs are cold-biased compared to recent SSTs and Mg/Ca-based SST reconstructions, which is probably caused by a high seasonality of the Thaumarchaeota, with a maximum productivity of these organisms during the cold summer months. However, a sub-surface production of GDGTs and/or a potential bias of SST reconstruction by terrestrial input could not be completely excluded.
Resumo:
Time-series sediment traps were deployed for five consecutive years in two distinctively different subarctic marine environments. The centrally located subarctic pelagic Station SA (49°N, 174°W; water depth 5406 m) was simultaneously studied along with the marginal sea Station AB (53.5°N, 177°W; water depth 3788 m) in the Aleutian Basin of the Bering Sea. A mooring system was tethered to the sea-floor with a PARFLUX type trap with 13 sample bottles, which was placed at 600 m above the sea-floor at each of the two stations. Sampling intervals were synchronized at the stations, and they were generally set for 20 days during highly productive seasons, spring through fall, and 56 days during winter months of low productivity. Total mass fluxes, which consisted of mainly biogenic phases, were significantly greater at the marginal sea Station AB than at the pelagic Station SA for the first four years and moderately greater for the last year of the observations. This reflects the generally recognized higher productivity in the Bering Sea. Temporal excursion patterns of the mass fluxes at the two stations generally were in parallel, implying that temporal changes in their biological productivity are strongly governed by a large-scale seasonal climatic variability over the region rather than local phenomena. The primary reason for the difference in total mass flux at the two stations stems mainly from varying contributions of siliceous and calcareous planktonic assemblages. A significantly higher opal contribution at Station AB than at Station SA was mainly due to diatoms. Diatom fluxes at the marginal sea station were about twice those observed at the pelagic station, resulting in a very high opal contribution at Station AB. In contrast to the opal fluxes, CaCO3 fluxes at Station AB were slightly lower than at Station SA. The ratios of Corg/Cinorg were usually significantly greater than one in both regions, suggesting that preferentially greater organic carbon from cytoplasm than skeletal inorganic carbon was exported from the surface layers. Such a process, known as the biological pump, leads to a carbon sink which effectively lowers p CO2 in the surface layers and then allows a net flux of atmospheric CO2 into the surface layer. The efficiency of the biological pump is greater in the Bering Sea than at the open-ocean station.
Resumo:
A Pliocene (2.6-3.5 Ma) age is determined from glacial sediments studied in a 20m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the 'Vestfold Glaciation' may have been due to lateral expansion of the Sorsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea.
Resumo:
Long chain diols are lipids that have gained interest over the last years due to their high potential to serve as biomarkers and diol indices have been proposed to reconstruct upwelling conditions and sea surface temperature (SST). However, little is known about the sources of the diols and the mechanisms impacting their distribution. Here we studied the factors controlling diol distributions in the Iberian Atlantic margin, which is characterized by a dynamic continental shelf under the influence of upwelling of nutrient-rich cold deep waters, and fluvial input. We analyzed suspended particulate matter (SPM) of the Tagus river, marine SPM and marine surface sediments along five transects off the Iberian margin, as well as riverbank sediments and soil from the catchment area of the Tagus river. Relatively high fractional abundances of the C32 1,15-diol (normalized with respect to the 1,13- and 1,15-diols) were observed in surface sediments in front of major river mouths and this abundance correlates strongly with the BIT index, a tracer for continental input of organic carbon. Together with an even higher fractional abundance of the C32 1,15-diol in the Tagus river SPM, and the absence of long chain diols in the watershed riverbank sediments and soils, we suggest that this long chain diol is produced in-situ in the river. Further support for this hypothesis comes from the small but distinct stable carbon isotopic difference of 1.3? with the marine C28 1,13-diol. The 1,14-diols are relatively abundant in surface sediments directly along the northern part of the coast, close to the upwelling zone, suggesting that Diol Indices based on 1,14-diols would work well as upwelling tracers in this region. Strikingly, we observed a significant difference in stable carbon isotopic composition between the monounsaturated C30:1 1,14- and the saturated C28 1,14-diol (3.8±0.7 per mil), suggesting different sources, in accordance with their different distributions. In addition, the Long chain Diol Index (LDI), a proxy for sea surface temperature, was applied for the surface sediments. The results correlate well with satellite SSTs offshore but reveal a significant discrepancy with satellite-derived SSTs in front of the Tagus and Sado rivers. This suggests that river outflow might compromise the applicability of this proxy.
Resumo:
Bog manganese was long ago reported from various places in Columbia county (1:54) and it seemed well to reexamine these occurrences. According to W. W. Mather in his report of the First District Survey, 1836-42, " in the counties of Columbia and Dutchess 50,000 tons of manganese could be procured without any great expense, if carefully prepared." He also stated that some of the bog manganese showed on analysis as high as 68.5 per cent manganese oxide and less than 5 per cent silica. At the direction of the State Geologist the writer has devoted most of the summer of 191 7 to this work. The results of this investigation, though not in any way confirming the quantitative results of Mr Mather, are herewith published as a matter of record and as an account of the manner of the occurrence and the genesis of postglacial bog manganese.
Resumo:
Clay-mineral composition and biogenic opal content in upper Miocene to Quaternary drift sediments recovered at two Ocean Drilling Program (ODP) sites from the continental rise in the Bellingshausen Sea had been analyzed in order to reconstruct the climatic and glacial history of the Antarctic Peninsula. The clay mineral composition at both sites is dominated by smectite, illite, and chlorite, and alternates between a smectite-enriched and a chlorite-enriched assemblage throughout the last 9.3 my. The spatial distribution of clay minerals in Holocene sediments west of the Antarctic Peninsula facilitates the identification of particular source areas, and thus the reconstruction of transport pathways. The similarity to clay mineral variations reported from upper Quaternary sequences suggests that the short-term clay-mineralogical fluctuations in the ODP cores reflect glacial-interglacial cyclicity. Thus, repeated ice advances and retreats in response to a varying size of the Antarctic Peninsula ice cap are likely to have occurred throughout the late Neogene and Quaternary. The clay minerals in the drift sediments exhibit only slight long-term variations, which are caused by local changes in glacial erosion and in supply of source rocks, rather than by major climatic changes. The opal records at the ODP sites are dominated by long-term variations since the late Miocene. We infer that the opal content in the drift sediments, although it is influenced by dissolution in the water column and the sediment column and by the burial with lithogenic detritus, provides a signal of paleoproductivity. Because the annual sea-ice coverage is regarded as the main factor controlling biological productivity, the opal signal helps to reconstruct paleoceanographic changes in the Bellingshausen Sea. Slightly enhanced opal deposition during the late Miocene indicates slightly warmer climatic conditions in the Antarctic Peninsula area than at present. During the early Pliocene, enhanced opal deposition in the Pacific sector of the Southern Ocean and coinciding high opal concentrations in sedimentary sequences from the Atlantic and Indian sectors document a strong reduction of sea-ice cover and relatively warm climatic conditions. Thereby, the early onset of the Pliocene warmth in the Bellingshausen Sea points to a positive feedback of regional Antarctic climate on the global thermohaline circulation. A decrease of opal deposition between 3.1 and 2.6 Ma likely reflects sea-ice expansion in response to reduced supply of northern-sourced deep-waters to the Southern Ocean, caused by the onset of Northern Hemisphere glaciation. Throughout the Quaternary, a relatively constant level of opal deposition on the Antarctic continental margin indicates relatively stable climatic conditions.