110 resultados para Logs steaming
Resumo:
During Ocean Drilling Program Leg 199 in the equatorial Pacific, visible and near-infrared spectroscopy (VNIS) was used to measure the reflectance spectra (350-2500 nm) of 1343 sediment samples. Reflectance spectra were also measured for a suite of 60 samples of known mineralogy, thereby providing a local ground-truth calibration of spectral features to percentages of calcite, opal, smectite, and illite. The associated algorithm was used to calculate mineral percentages from the 1343 spectra. Using multiple regression and VNIS mineralogy, multisensor track physical properties and light spectroscopy data were then converted into continuous high-resolution mineralogy logs.
Resumo:
From 0 to 277 m at Site 530 are found Holocene to Miocene diatom ooze, nannofossil ooze, marl, clay, and debrisflow deposits; from 277 to 467 m are Miocene to Oligocene mud; from 467 to 1103 m are Eocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, sandstone, and black shale in the lower portion; from 1103 to 1121 m are basalts. In the interval from 0 to 467 m, in Holocene to Oligocene pelagic oozes, marl, clay, debris flows, and mud, velocities are 1.5 to 1.8 km/s; below 200 m velocities increase irregularly with increasing depth. From 0 to 100 m, in Holocene to Pleistocene diatom and nannofossil oozes (excluding debris flows), velocities are approximately equivalent to that of the interstitial seawater, and thus acoustic reflections in the upper 100 m are primarily caused by variations in density and porosity. Below 100 or 200 m, acoustic reflections are caused by variations in both velocity and density. From 100 to 467 m, in Miocene-Oligocene nannofossil ooze, clay, marl, debris flows, and mud, acoustic anisotropy irregularly increases to 10%, with 2 to 5% being typical. From 467 to 1103 m in Paleocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, and black shale in the lower portion of the hole, velocities range from 1.6 to 5.48 km/s, and acoustic anisotropies are as great as 47% (1.0 km/s) faster horizontally. Mudstone and uncemented sandstone have anisotropies which irregularly increase with increasing depth from 5 to 10% (0.2 km/s). Calcareous mudstones have the greatest anisotropies, typically 35% (0.6 km/s). Below 1103 m, basalt velocities ranged from 4.68 to 4.98 km/s. A typical value is about 4.8 km/s. In situ velocities are calculated from velocity data obtained in the laboratory. These are corrected for in situ temperature, hydrostatic pressure, and porosity rebound (expansion when the overburden pressure is released). These corrections do not include rigidity variations caused by overburden pressures. These corrections affect semiconsolidated sedimentary rocks the most (up to 0.25 km/s faster). These laboratory velocities appear to be greater than the velocities from the sonic log. Reflection coefficients derived from the laboratory data, in general, agree with the major features on the seismic profiles. These indicate more potential reflectors than indicated from the reflection coefficients derived using the Gearhart-Owen Sonic Log from 625 to 940 m, because the Sonic Log data average thin beds. Porosity-density data versus depth for mud, mudstone, and pelagic oozes agree with data for similar sediments as summarized in Hamilton (1976). At depths of about 400 m and about 850 m are zones of relatively higher porosity mudstones, which may suggest anomalously high pore pressure; however, they are more probably caused by variations in grain-size distribution and lithology. Electrical resistivity (horizontal) from 625 to 950 m ranged from about 1.0 to 4.0 ohm-m, in Maestrichtian to Santonian- Coniacian mudstone, marlstone, chalk, clastic limestone, and sandstone. An interstitial-water resistivity curve did not indicate any unexpected lithology or unusual fluid or gas in the pores of the rock. These logs were above the black shale beds. From 0 to 100 m at Sites 530 and 532, the vane shear strength on undisturbed samples of Holocene-Pleistocene diatom and nannofossil ooze uniformly increases from about 80 g/cm**2 to about 800 g/cm**2. From 100 to 300 m, vane shear strength of Pleistocene-Miocene nannofossil ooze, clay, and marl are irregular versus depth with a range of 500 to 2300 g/cm**2; and at Site 532 the vane shear strength appears to decrease irregularly and slightly with increasing depth (gassy zone). Vane shear strength values of gassy samples may not be valid, for the samples may be disturbed as gas evolves, and the sediments may not be gassy at in situ depths.
Resumo:
The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.
Resumo:
The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.
Resumo:
Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
Resumo:
Pelagic sediments recording an extreme and short-lived global warming event, the Late Paleocene Thermal Maximum (LPTM), were recovered from Hole 999B (Colombian Basin) and Holes 1001A and 1001B (lower Nicaraguan Rise) in the Caribbean Sea during Ocean Drilling Program Leg 165. The LPTM consists of a 0.3-0.97 m calcareous claystone to claystone horizon. High-resolution downhole logging (Formation MicroScanner [FMS]), standard downhole logs (resistivity, velocity, density, natural gamma ray, and geochemical log), and non-destructive chemical and physical property (multisensor core logger [MSCL] and X-ray fluorescence [XRF] core scanner) data were used to identify composite sections from parallel holes and to record sedimentological and environmental changes associated with the LPTM. Downhole logging data indicate an abrupt and distinct difference in physical and chemical properties that extend for tens of meters above and below the LPTM. These observations indicate a rapid environmental change at the LPTM, which persists beyond the LPTM anomaly. Comparisons of gamma-ray attenuation porosity evaluator (GRAPE) densities from MSCL logging on split cores with FMS resistivity values allows core-to-log correlation with a high degree of accuracy. High-resolution magnetic susceptibility measurements of the cores are compared with elemental concentrations (e.g., Fe, Ca) analyzed by high-resolution XRF scanning. The high-resolution data obtained from several detailed core and downhole logging methods are the key to the construction of composite sections, the correlation of both adjacent holes and distant sites, and core-log integration. These continuous-depth series reveal the LPTM as a multiphase event with a nearly instantaneous onset, followed by a much different set of physical and chemical conditions of short duration, succeeded by a longer transition to a new, more permanent set of environmental circumstances. The estimated duration of these 'phases' are consistent with paleontological and isotopic studies of the LPTM
Resumo:
Detailed biostratigraphy in Site 1006 based on planktonic foraminifers and nannofossils shows large-scale sedimentation rate variability in the Florida Strait west of the Great Bahama Bank. A 'floating' cyclostratigraphy based mainly on resistivity logs and magnetic susceptibility data has been fixed to the biostratigraphy in the absence of magnetostratigraphy. The strongest orbital cycle present is the precessional beat, which is present in the borehole logs throughout the record. Counting the cycles resulted in an accurate time scale and thus a sedimentation rate time series. Spectral analysis of the sedimentation rate time series shows that the short-term cycle of eccentricity (~125 k.y.) and the long term cycle of eccentricity (~400 k.y.) are pervasive throughout the Miocene record, together with the long-term ~2-m.y. eccentricity cycle. The Great Bahama Bank produced pulses of shallow carbonate input once every precessional (sea level) cycle during the Miocene and perhaps two pulses per cycle in the early Pliocene. The amount of sediment exported in these pulses appears to be controlled by eccentricity modulation of the precessional amplitude and therefore the amplitude of the sea-level rise. Finally, an increase in sedimentation rate just after the Miocene/Pliocene boundary is attributed to a change in the location and strength of sediment drift currents in the Florida Strait due to reorganization of the currents following the closure of the Panama Isthmus.
Resumo:
Drilling at Site 765 in the Argo Abyssal Plain sampled sediments and oceanic crust adjacent to the Australian margin. Some day, this site will be consumed in the Java Trench. An intensive analytical program was conducted to establish this site as a geochemical reference section forcrustal recycling calculations. About 150 sediment samples from Site 765 were analyzed for major and trace elements. Downhole trends in the sediment analyses agree well with trends in sediment mineralogy, as well as in Al and K logs. The primary signal in the geochemical variability is dilution of a detrital component by both biogenic silica and calcium carbonate. Although significant variations in the nonbiogenic component occur through time, its overall character is similar to nearby Canning Basin shales, which are typical of average post-Archean Australian shales (PAAS). The bulk composition of the hole is calculated using core descriptions to weight the analyses appropriately. However, a remarkably accurate estimate of the bulk composition of the hole can be made simply from PAAS and the average calcium carbonate and aluminum contents of the hole. Most elements can be estimated within 30% in this way. This means that estimating the bulk composition of other sections dominated by detrital and biogenic components may require little analytical effort: calcium carbonate contents, average Al contents, and average shale values can be taken from core descriptions, geochemical logs, and the literature, respectively. Some of the geochemical systematics developed at Site 765 can be extrapolated along the entire Sunda Trench. However, results are general, and Site 765 should serve as a useful reference for estimating the compositions of other continental margin sections approaching trenches around the world (e.g., outboard of the Lesser Antilles, Aegean, and Eolian arcs).