60 resultados para Last planner system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New values for the astronomical parameters of the Earth's orbit and rotation (eccentricity, obliquity and precession) are proposed for paleoclimatic research related to the Late Miocene, the Pliocene and the Quaternary. They have been obtained from a numerical solution of the Lagrangian system of the planetary point masses and from an analytical solution of the Poisson equations of the Earth-Moon system. The analytical expansion developed in this paper allows the direct determination of the main frequencies with their phase and amplitude. Numerical and analytical comparisons with the former astronomical solution BER78 are performed so that the accuracy and the interval of time over which the new solution is valid can be estimated. The corresponding insolation values have also been computed and compared to the former ones. This analysis leads to the conclusion that the new values are expected to be reliable over the last 5 Ma in the time domain and at least over the last 10 Ma in the frequency domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sediment cores retrieved from the continental slope in the Benguela Upwelling System, GeoB 1706 (19°33.7'S 11°10.5'E) and GeoB 1711 (23°18.9'S, 12°22.6'E), reveal striking variations in planktonic foraminiferal abundances during the last 160,000 years. These fluctuations are investigated to assess changes in the intensity and position of the upwelling centres off Namibia. Four species make up over 95% of the variation within the core, and enable the record to be divided into episodes characterized by particular planktonic foraminiferal assemblages. The fossil assemblages have meaningful ecological significance when compared to those of the modern day and the relationship to their environment. The cold-water planktonic foraminifer, Neogloboquadrina pachyderma sinistral [N. pachyderma (s)], dominates the modern-day, coastal upwelling centres, and Neogloboquadrina pachyderma dextral and Globigerina bulloides characterize the fringes of the upwelling cells. Globorotalia inflata is representative of the offshore boundary between newly upwelled waters and the transitional, reduced nutrient levels of the subtropical waters. In the fossil record, episodes of high N. pachyderma (s) abundances are interpreted as evidence of increased upwelling intensity, and the associated increase in nutrients. The N. pachyderma (s) record suggests temporal shifts in the intensity of upwelling, and corresponding trophic domains, that do not follow the typical glacial-interglacial pattern. Periods of high N. pachyderma (s) abundance describe rapid, discrete events dominating isotope stages 3 and 2. The timing of these events correlates to the temporal shifts of the Angola-Benguela Front (Jansen et al., 1997) situated to the north of the Walvis Ridge. Absence of high abundances of N. pachyderma (s) from the continental slope of the southern Cape Basin indicates that Southern Ocean surface water advection has not exerted a major influence on the Benguela Current System. The coincidence of increased upwelling intensity with the movement of the Angola-Benguela Front can be interpreted mainly by changes in strength and zonality of the trade wind system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolution of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record ''glacial'' and ''interglacial'' modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A north-south transect of 17 cores was constructed along the eastern boundary of the California Current system from 33° to 42°N to investigate the changes in biogenic sedimentation over the past 30 kyr. Percentages and mass accumulation rates of CaCO3, Corg, and biogenic opal were assembled at 500 to 1000 years/sample to provide relatively high resolution. Time-space maps reveal a complex pattern of changes that do not follow a simple glacial-interglacial two-mode model. Biogenic sedimentation shows responses that are sometimes time-transgressive and sometimes coeval, and most of the responses show more consistency within a limited geographic area than any temporal consistency. Reconstructed conditions during late oxygen isotope stage 3 were more like early Holocene conditions than any other time during the last 30 kyr. Coastal upwelling and productivity during oxygen isotope stage 3 were relatively strong along the central California margin but were weak along the northern California margin. Precipitation increased during the last glacial interval in the central California region, and the waters of the southern California margin had relatively low productivity. Productivity on the southern Oregon margin was relatively low at the beginning of the last glacial interval, but by about 20 ka, productivity in this area significantly increased. This change suggests that the center of the divergence of the West Wind Drift shifted south at this time. The end of the last glacial interval was characterized by increased productivity in the southern California margin and increased upwelling along the central California margin but upwelling remained weak along the northern California margin. A sudden (<300 years) decrease in CaCO3, Corg, and biogenic opal occurred at 13 ka. The changes suggest a major reorientation of the atmospheric circulation in the North Pacific and western North America and the establishment of a strong seasonality in the central California region. A carbonate preservation event occurred at 10 ka that appears to reflect the uptake of CO2 by the terrestrial biosphere as the northern latitudes were reforested following retreat of the glaciers. The Holocene has been a period of relatively high productivity in the southern California margin, relatively strong coastal upwelling along the central California margin, relatively weak upwelling along the northern California margin, and the northward migration of the divergence zone of the West Wind Drift.