826 resultados para Kiel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kiel Outdoor Benthocosm infrastructure (Kiel, Germany,N 54°19.8'; E 010°09.0') allows combining natural in-situ fluctuations on all environmental variables with the controlled manipulation of treatment factors. The environmental fluctuations are admitted by a continuous flow-through of fjord water. The treatment is applied by delta-treatments which shift the mean of target variables (temperature and pH in this case) while maintaining the frequency and amplitude of natural fluctuations. The data presented here show the treatment levels and the continuously logged temperature and pH conditions in the experimental tanks. The dynamics of temperature and pH are driven by (i) in situ variability, (ii) the treatments imposed and (iii) the biology of the biota in the tanks. These contained macroalgal communities with associated mesograzers, mussels, and sea stars. The data set comprised 5 experimental runs: spring experiment (4.4.-19.6.2013), summer experiment 1 (4.7.-17.9.2013), autumn experiment (10.10-17.12.2013), winter experiment (16.1. - 1.4.2014), summer experiment 2 (10.7. - 26.9.2014).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HydroC® CO2 sensor was deployed from a pontoon at the waterfront of the GEOMAR west shore building into Kiel Fjord, Western Baltic Sea (Kiel, Germany; 54°19'48.78"N, 010° 8'59.44"E). Since the pontoon is floating the deployment depth of the sensor was constant at 1m. Data of three deployment intervals are published here: 1) July 2012 - December 2012 2) April 2013 - June 2013 3) November 2013 - January 2015 Data are processed and corrected, for documentation and graphical overview see further details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geological observations, using "free-diving" techniques (Figure I) were made in September, 1960 and March 1961 along two continuous profiles in the outer Kiel Harbor, Germany and at several other spot locations in the Western Baltic Sea. A distinct terrace, cut in Pleistocene glacial till, was found that was covered with varying amounts and types of recent deposits. Hand samples were taken of the sea-floor sediments and grainsize distribution determined for both the sediment as a whole and for its heavy mineral fraction. From the Laboratory and Field observations it was possible to recognize two distinct types of sand; Type I, Sand resulting from transportation over a long period of time and distance and Type 11, Sand resulting from little transportation and found today near to xvhere it was formed. Several criterea related to the agent of movement could be used to classify the nature of the sediment; (1) undisturbed (the sediment Cover of the Pleistocene Terrace is essentially undisturbed), (2) mixed by organisms, (3) transported by water movements (sediment found with ripple marks, etc., and (4) "Scoured" (the movement of individual particles of sediment from around larger boulders causes a slow downward movement or "Creeping" which is due to both the force of gravity and bottom currents. These observations and laboratory studies are discussed concerning their relationship to the formation of residual sediments, the direction of sand transportation, and the intensive erosion on the outer edge of the wave-cut platform found in this part of the Baltic Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present microfouling and bioassay data were used to analyse whether microfouling control of F. vesiculosus and F. serratus against prokaryotes and pennate diatoms fluctuates with season and correlates with in situ microfouling pressure. The two perennial brown macroalgae Fucus vesiculosus and Fucus serratus were sampled monthly from mixed stands at a depth of 0.5 m under mid water level at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) within a one-year filed study (August 2012 - July 2013). Microfouler recruitment on glass (reference surface, n = 9 per month) and on both Fucus species (n = 9 per month and Fucus species) was determined monthly. Microfouling control strength of Fucus surface metabolites was tested by an in situ bioassay approach (n = 6 per month and species). For details see related publication Rickert et al. 2016, DOI: 10.1007/s00227-016-2970-3.