135 resultados para Iridium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary chemical heterogeneity in the sheeted dike complex in Deep Sea Drilling Project Hole 504B makes these rocks unsuitable for conventional mass balance calculations in determining element mobility associated with hydrothermal alteration. Due to the original heterogeneity and variable degrees of fractionation in the dikes, an appropriate reference sample on which calculations can be based is difficult to find. Therefore, the use of incompatible element ratios is developed to evaluate geochemical changes during alteration(s). For example, on a Zr/Yb-La/Yb plot, scatter along a straight line suggests tapping of a variably depleted mantle source and deviation from the line suggests element mobility (gain or loss). Using this method, our data indicates that the hydrothermal evolution of the sheeted dike complex was accompanied by significant loss of Cu, Zn, and Ti and some loss of La. The sheeted dike complex has low platinum group element (PGE) concentrations and steep PGE patterns, typical of mid-ocean ridge basalts (MORBs) on the global scale. We propose that the unusual PGE patterns of MORBs cannot be entirely generated by a partial melting and sulfide segregation model; instead, these patterns in part must have been inherited from their mantle source. The Au data show no evidence for mobilization during hydrothermal alteration of the dikes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 176 built upon the work of ODP Leg 118 wherein the 500-m section that was sampled represented the most complete recovery of an intact portion of lower oceanic crust ever described. During Leg 176, we deepened Hole 735B to >1500 m below seafloor in an environment where gabbroic rocks have been tectonically exposed at the Southwest Indian Ridge. This new expedition extended the remarkable recovery (>85%) that allowed unprecedented investigations into the nature of the lower oceanic crust as a result of Leg 118. Sulfide mineral and bulk rock compositions were determined from samples in the 1000-m section of oceanic gabbros recovered during Leg 176. The sulfide assemblage of pyrrhotite, chalcopyrite, pentlandite, and troilite is present throughout this section, as it is throughout the 500-m gabbroic section above that was sampled during Leg 118. Troilite is commonly present as lamellae, and the only interval where troilite was not observed is from the uppermost 150 m of the section sampled during Leg 118, which is intensely metamorphosed. The common presence of troilite indicates that much of the sulfide assemblage from Hole 735B precipitated from a magmatic system and subsequently underwent low-temperature reequilibration. Evaluation of geochemical trends in bulk rock and sulfides indicates that the combined effects of olivine accumulation in troctolites and high pentlandite to pyrrhotite ratios account for the sporadic bulk rock compositions high in Ni. Bulk rock and sulfide mineral geochemical indicators that are spatially coincident with structural and physical properties anomalies indicate a heretofore unrecognized lithologic unit boundary in this section. Platinum-group element (PGE) compositions were also determined for 36 samples from throughout the section that were recovered during Leg 176. Whereas most samples had low (<0.4 ppb) PGE concentrations, rare samples had elevated PGE values, but no unique common trend between these samples is evident.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentrations of the platinum-group elements (PGE) Ir, Ru, Pt and Pd were determined in 11 abyssal peridotites from ODP Sites 895 and 920, as well in six ultramafic rocks from the Horoman peridotite body, Japan, which is generally thought to represent former asthenospheric mantle. Individual oceanic peridotites from ODP drill cores are characterized by variable absolute and relative PGE abundances, but the average PGE concentrations of both ODP suites are very similar. This indicates that the distribution of the noble metals in the mantle is characterized by small-scale heterogeneity and large-scale homogeneity. The mean Ru/Ir and Pt/Ir ratios of all ODP peridotites are within 15% and 3%, respectively, of CI-chondritic values. These results are consistent with models that advocate that a late veneer of chondritic material provided the present PGE budget of the silicate Earth. The data are not reconcilable with the addition of a significant amount of differentiated outer core material to the upper mantle. Furthermore, the results of petrogenetic model calculations indicate that the addition of sulfides derived from percolating magmas may be responsible for the variable and generally suprachondritic Pd/Ir ratios observed in abyssal peridotites. Ultramafic rocks from the Horoman peridotite have PGE signatures distinct from abyssal peridotites: Pt/Ir and Pd/Ir are correlated with lithophile element concentrations such that the most fertile lherzolites are characterized by non-primitive PGE ratios. This indicates that processes more complex than simple in-situ melt extraction are required to produce the geochemical systematics, if the Horoman peridotite formed from asthenospheric mantle with chondritic relative PGE abundances. In this case, the PGE results can be explained by melt depletion accompanied or followed by mixing of depleted residues with sulfides, with or without the addition of basaltic melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New data on Ru/Ir abundance ratios are presented for nonmarine (Hell Creek, Montana; Frenchman River, Saskatchewan) and marine Cretaceous-Tertiary boundary sites (Brazos River, Texas; Beloc, Haiti; DSDP 577 and DSDP 596). The Ru/Ir ratio varies from 0.5 to 1 within 4000 km of Chicxulub and increases to 2-3 at paleodistances (65 Ma) of up to 12,000 km from the impact site. For CI chondrites, Ru/Ir = 1.5. A ballistic model of ejecta cloud cooling and expansion, which employs the available vapor-pressure versus temperature data for Ru and It, predicts qualitatively similar global variation in the Ru/Ir ratio but by only a factor of 1.5. We infer that several other factors, such as remobilization of PGE during diagenesis, preferential oxidation of Ru, condensation kinetics and atmospheric chemical and circulation processes, may account for the observed larger Ru/Ir variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleontological, stable isotopic, trace elemental abundance, and magnetostratigraphic studies have been performed on limestones spanning the Cretaceous/Tertiary boundary transition at Ocean Drilling Program (ODP) Hole 807C. Paleontological evidence exists for considerable resedimentation, which we attribute to the fact that Hole 807C is located in a basement graben. Age estimates based on planktonic foraminiferal biostratigraphy, as well as magnetostratigraphy, indicate that sedimentation rates could have been on the order of 12-14 m/m.y. This is significantly higher than those documented in other important Deep Sea Drilling Project (DSDP) and ODP Cretaceous/Tertiary boundary sections using the same age control points (e.g., DSDP Hole 577 and ODP Hole 690B), although not as high as those documented from DSDP Hole 524. The expanded nature of this succession has resulted in the Cretaceous/Tertiary boundary d13C decrease occurring over approximately a 9-m interval. Ir analysis of these sediments do not show a single large anomaly, as has been found in other Cretaceous/Tertiary boundary sections, but trivial background levels instead. Ce data support the hypothesis that this section has been expanded by secondary sedimentological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinoid element contents were determined in 16 samples of Fe-Mn crusts and nodules collected during dredging deep-sea mound slopes of the Pacific Ocean from the equator to 27°N. The method of neutron activation analysis with pre-concentration of the platinoids was used for these determinations. There is no relationship between platinoid contents in deep-sea (>3000 m) Fe-Mn nodules with depth of sampling, as well as with age of nodule layers. It is concludet that ultramafic rocks are the primary source of platinoids in Fe-Mn nodules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An apparently complete Danian section was recovered at ODP Site 738 on the southern Kerguelen Plateau. Calcareous nannofossils are abundant and moderately preserved in the section. A number of taxa common in middle or low latitudes, such as Braarudosphaera, Biscutum? romeinii, Biscutum? parvulum, Cyclagelosphaera, Octolithus multiplus, and Toweius petalosus are absent at Site 738. On the other hand, a bloom of Hornibrookina occurs at Site 738 only slightly (15 cm) above the Cretaceous/Tertiary boundary as defined by the iridium peak. Species of Chiasmolithus and Prinsius are very abundant. This gives the nannofossil assemblages distinct high-latitude characteristics and suggests significant latitudinal thermal gradients in the Danian oceans. A Danian nannofossil zonation for the Antarctic region is proposed, which utilizes traditional markers and several nontraditional markers, i.e., the first occurrences of Hornibrookina, Prinsius martinii, and Chiasmolithus bidens, and the last occurrence of Hornibrookina teuriensis. Quantitative analyses of the calcareous nannofossil assemblages from Site 738 reveal four steps of rapid floral changes in the early Danian before relatively stable nannofloral conditions were reached at about 63.8 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution patterns of gold, platinum group metals (PGE), and volatile components are studied in the main rock types of the Mid-Atlantic Ridge lithosphere (ultrabasites, gabbro, and basalts) from the transform fracture zone at 15°20'N. It is ascertained that PGE content depends on the reduction degree of fluids, on rock types, and on their formation conditions. It is noted that concentrations of refractory elements (Os, Ir, Rh) decrease, while those of fusible elements (Pt, Pd, Au) increase with depth. The chondrite type of distribution is only noted in the ultrabasite rocks. Increase in water and CO2 contents and in oxidation degree of fluids occurs with transition from basalts to ultrabasites, as well as from normal magmatic systems to fluid-enriched anomalous systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abundance of noble metals and bulk chemical composition have been studied in bottom sediments of the Chukchi Sea. Distribution of noble metals and their correlation with major and trace elements in the sediments have been analyzed using multicomponent statistics. It was established that average contents of noble metals in the bottom sediments of the Chukchi Sea significantly exceed those both in shelf terrigenous sediments and stratisphere. Osmium and iridium enrich mixed and pelitic sediments relative to shallow-water sediments and their influx is presumably determined by erosion of coastal and bottom unconsolidated deposits. High Ag, Ru, Au, and Pt contents were identified in clayey sediments enriched in biogenic elements in the some areas of the Southern Chukchi plain (Chukchi Sea) confined to intersection zones of submeridional and sublatitudinal structures of the graben-rift system, which formed in Mesozoic and activated in Late Cenozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of gabbroic rocks from the drill core of Hole 735B (ODP Leg 176) at the 11 Ma Atlantis II bank close to the slow spreading Southwest Indian Ridge (SWIR) has been analyzed for major and trace elements and Sr, Nd and Pb isotopic composition. The samples are thought to represent much of the mineralogical and geochemical variation in a vertical 1-km section (500-1500 m below the sea floor) of the lower ocean crust. Primitive troctolitic gabbros, olivine gabbros and gabbros that have Mg#=84-70, Ca#>61 and low Na# (Na/(Na+Al)) (8-17) are intruded by patches or veins of more evolved FeTi-oxide rich gabbroic and dioritic rocks with Mg# to 20, Ca# to 32, Na#=14-23, TiO2<7 wt.% and FeOtotal<18 wt.%. All rocks are acdcumulates, and incompatible element concentrations are low, e.g. Pb=0.1-0.7 ppm and U

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum-group elements (PGE), rhenium and osmium isotope data are reported for basalts from Deep Sea Drilling Project cores in the Philippine Sea Plate (PSP). Lithophile trace element and isotopic characteristics indicate a range of source components including DMM, EMII and subduction-enriched mantle. MORB-like basalts possess smooth, inclined chondrite-normalised PGE patterns with high palladium-PGE/iridium-PGE ratios, consistent with previously published data for MORB, and with the inferred compatibility of PGE. In contrast, while basalts with EMII-type lithophile element chemistry possess high Pt/Ir ratios, many have much lower Pd/Ir and unusually high Ru/Ir of >10. Similarly, back-arc samples from the Shikoku and Parece-Vela basins have very high Ru/Ir ratios (>30) and Pd/Ir as low as 1.1. Such extreme Pd/Ir and Ru/Ir ratios have not been previously reported in mafic volcanic suites and cannot be easily explained by variable degrees of melting, fractional crystallisation or by a shallow-level process such as alteration or degassing. The data appear most consistent with sampling of at least two mantle components with distinct PGE compositions. Peridotites with the required PGE characteristics (i.e. low Pd, but relatively high Ru and Re) have not been documented in oceanic mantle, but have been found in sub-continental mantle lithosphere and are the result of considerable melt depletion and selective metasomatic enrichment (mainly Re). The long-term presence of subduction zones surrounding the Philippine Sea Plate makes this a prime location for metasomatic enrichment of mantle, either through fluid enrichment or infiltration by small melt fractions. The Re-Os isotope data are difficult to interpret with confidence due to low Os concentrations in most samples and the uncertainty in sample age. Data for Site 444A (Shikoku Basin) give an age of 17.7+/-1.3 Ma (MSWD = 14), consistent with the proposed age of basement at the site and thus provides the first robust radiometric age for these samples. The initial 187Os/188Os of 0.1298+/-0.0069 is consistent with global MORB, and precludes significant metasomatic enrichment of Os by radiogenic slab fluids. Re-Os data for Sites 446A (two suites, Daito Basin) and 450 (Parece-Vela Basin) indicate ages of 73, 68 and 43 Ma, which are respectively, 30, 17 and >12 Ma older than previously proposed ages. The alkalic and tholeiitic suites from Site 446A define regression lines with different 187Os/188Osinitial (0.170+/-0.033 and 0.112+/-0.024, respectively) which could perhaps be explained by preferential sampling of interstitial, metasomatic sulphides (with higher time-integrated Re/Os ratios) by smaller percentage alkalic melts. One sample, with lithophile elements indistinguishable from MORB, is Os-rich (146 pg/g) and has an initial 187Os/188Os of 0.1594, which is at the upper limit of the accepted OIB range. Given the Os-rich nature of this sample and the lack of evidence for subduction or recycled crust inputs, this osmium isotope ratio likely reflects heterogeneity in the DMM. The dataset as a whole is a striking indication of the possible PGE and Os isotope variability within a region of mantle that has experienced a complex tectonic history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siderophilic element concentrations are high in sediments from the Cretaceous-Tertiary boundary. An extraterrestrial source is indicated. Concentrations are too high to be understood in terms of the impact of a chondritic asteroid. Either the projectile was a metal-sulphide core or the infalling material (probably weak cometary matter) was slowed down during atmospheric passage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently published studies of Ocean Drilling Project (ODP) cores from near southeast Asia revealed microtektite contents much higher than those in previously studied cores, suggesting that Ir contents might be enhanced in the tektite-bearing horizons. We determined a positive Ir anomaly in ODP core 758B from the Ninetyeast Ridge, eastern Indian Ocean; the peak Ir concentration of 190 pg/ g was ~2X the continuum level. The net Ir fluence is 1.8+/-0.5 ng/cm**2 over the depth interval from 10.87 to 11.32 m; a small additional peak also associated with microtektites contributes another 0.5 ng Ir/cm**2. Concentrations of Ir in core 769A show more scatter, but a small Ir enhancement is associated with the peak microtektite abundance; our best estimate of the poorly constrained fluence is 1.3+/-0.7 ng/cm**2. Data on deep-sea cores show that the microtektite fluence falls exponentially away from southeast Asia, the fluence dropping a factor of 2 in ~400 km. In southeast Asia the trend merges with a roughly estimated mass fluence of ~1.1 g/cm**2 inferred from evidence of a melt sheet in northeast Thailand. Integration of the inferred distribution yields a total mass of Australasian tektites of 3.2x10**16 g, much higher than previous estimates. Assuming a similar fallout distribution for the impactor and a chondritic composition allows us to calculate its mass to be 1.5x10**15 g, about 3 orders of magnitude smaller than the minimum mass of the impactor responsible for the extinctions at the end of the Cretaceous.