50 resultados para Inter-cycle Variability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (d18O) and carbon (d13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic ice-sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337 and U1338 on a consistent, astronomically-tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on d13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our inter-site comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleo-depths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (d18O minima) and d13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to d13C maxima and d18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution continuous record of diatom census counts and diatom specific biomarkers in sediment core NBP0101-JPC24 allows assessment of oceanographic and environmental conditions in eastern Prydz Bay during the deglaciation (11 100-9000 cal yr BP) at decadal timescale. Our study improves previous snapshots investigations based on resin-embedded thin sections and presents a new proxy that compliments the diatom census counts. Our results suggest that the ice sheet retreat over the core site is dated at ~11 100 cal yr BP, setting the onset of local deglaciation and subsequent open marine conditions. The glacial retreat in Prydz Bay is due to global warming initiated at 18 cal ka BP and the regional development of the Prydz Bay cyclonic gyre. Our results further demonstrate that the deglaciation in eastern Prydz Bay can be separated in four phases: the first between 11 100 and 10 900 cal yr BP when the ice shelf was proximal and sea ice was almost perennial; the second and the third phases between 10 900-10 400 cal yr BP and 10 400-9900 cal yr BP, respectively, when the ice shelf retreated and seasonal sea ice cycle consequently developed promoting warmer water to pump into the bay within the gyre, which in turn forced the ice shelf recession and the yearly sea ice cycle establishment; and the fourth between 9900 and 9000 cal yr BP when Holocene condition were set with a recurrent seasonal sea ice cycle and a well established Prydz Bay gyre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (~0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north-south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial-temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.