63 resultados para Intensity analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The improved understanding of the pollen signal in the marine sediments offshore of northwest Africa is applied to deep-sea core M 16017-2 at 21°N. Downcore fluctuations in the percentage, concentration and influx diagrams record latitudinal shifts of the main northwest African vegetation zones and characteristics of the trade winds and the African Easterly Jet. Time control is provided by 14C ages and 180 records. During the period 19,000-14,000 yr B.P. a compressed savanna belt extended between about 12 ° and 14-15°N. The Sahara had maximally expanded northward and southward under hyperarid climatic conditions. The belt with trade winds and dominant African Easterly Jet transport had not shifted latitudinally. The trade winds were strong as compared to the modern situation but around 13,000 yr B.P. the trade winds weakened. After 14,000 yr B.P. the climate became less arid south of the Sahara and a first spike of fluvial runoff is registered around 13,000 yr B.P. Fluvial runoff increased strongly around 11,000 yr B.P. and maximum runoff is recorded from about 9000-7800 yr B.P. Around 12,500 yr B.P. the savanna belt started to shift northward and became richer in woody species: it shifted about 6° of latitude, reached its northernmost position during the period of 9200-7800 yr B.P. and extended between about 16° and 24°N at that time. Tropical forest had reached its maximum expansion and the Guinea zone reached as far north as about 15°N, reflecting very humid climatic conditions south of the Sahara. North of the Sahara the climate also became more humid and Mediterranean vegetation developed rapidly. The Sahara had maximally contracted and the trade winds were weak and comparable with the present day intensity. After about 7800 yr B.P. the southern fringe of the Sahara and accordingly the savanna belt, shifted rapidly southward again.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind- induced exposure is one of the major forces shaping the geomorphology and biota in coastal areas. The effect of wave exposure on littoral biota is well known in marine environments (Ekebon et al., 2003; Burrows et al., 2008). In the Cabrera Archipelago National Park wave exposure has demostrated to have an effect on the spatial distribution of different stages of E.marginatus (Alvarez et al., 2010). Standarized average wave exposures during 2008 along the Cabrera Archipelago National park coast line were calculated to be applied in studies of littoral species distribution within the archipelago. Average wave exposure (or apparent wave power) was calculated for points located 50 m equidistant on the coastline following the EXA methodology (EXposure estimates for fragmented Archipelagos) (Ekebon et al., 2003). The average wave exposures were standardized from 1 to 100 (minimum and maximum in the area), showing coastal areas with different levels of mea wave exposure during the year. Input wind data (direction and intensity) from 2008 was registered at the Cabrera mooring located north of Cabrera Archipelago. Data were provided by IMEDEA (CSIC-UIB, TMMOS http://www.imedea.uib-csic.es/tmoos/boyas/). This cartography has been developed under the framework of the project EPIMHAR, funded by the National Park's Network (Spanish Ministry of Environment, Maritime and Rural Affairs, reference: 012/2007 ). Part of this work has been developed under the research programs funded by "Fons de Garantia Agrària i Pesquera de les Illes Balears (FOGAIBA)".