181 resultados para Inland water transportation--France
Resumo:
Dissolved organic carbon (DOC) distribution and dynamics are investigated at the DYFAMED site (central Ligurian Sea, NW Mediterranean) in relation to hydrological and biological contexts, using a 4-year time-series dataset (1991-1994). The DYFAMED site is regarded as a one-dimensional station where simple hydrological mechanisms prevail and where the ecosystem is quite well understood. An average vertical profile of DOC concentration ([DOC]) indicates that maximal concentrations and variability are concentrated in the surface layers. For depths >800 m, the annual variations are on average similar to the analytical standard deviation (~2 µM). The "composite" [DOC] distribution (average distribution over a typical year, integrating about 40 monthly profiles) for surface waters (0-200 m) is closely related to hydrological and phytoplanktonic forcings. It exhibits summer DOC accumulation in surface waters, due to spring-summer stratification and successive phytoplanktonic events such as spring and summer blooms, and winter DOC removal to deeper waters, due to intense vertical mixing. The analysis of vertical [DOC] gradient at 100-m depth as a function of the integrated DOC content in the 0-100-m layer makes it possible to objectively distinguish three specific periods: the winter vertical mixing period, the period of stratification and spring phytoplankton bloom, and the period of stratification re-inforcement and summer-fall phytoplankton bloom. We recalculate the vertical DOC fluxes to deep waters using a larger original dataset, after the first direct calculation (Deep-Sea Res. 40 (10) (1993) 1963, 1972) that was reproduced for other oceanic areas. The seasonal variations of the "composite" [DOC] distribution in surface waters are significantly correlated to the apparent oxygen utilization distribution, but the biogeochemical significance of such a correlation is still under examination. The global significance of our local findings is presented and the role of the oceanic DOC in the global carbon cycle is emphasized, especially with respect to several current issues, such as the oceanic "missing sink" and the equivalence between new production and exported production.
Resumo:
Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth >1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30-75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0-20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5-5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.
Resumo:
This dataset presents hydro-sedimentary data within the Bossons glacier proglacial area. Bossons glacier is rapidly retreating and its proglacial area is deglaciated for ~ 30 years. It is an intriguing location to study periglacial, proglacial and subglacial erosion processes which requires estimating Total Dissolved Solid (TDS) and Total Suspended Solid (TSS) concentrations, and discharge. Measurements were performed at three distinct locations within Bosson glacier watershed : Bossons downstream (BDS), Bossons upstream (BUS) and Crosette (CRO). The latter is located at the glacier termini whereas BDS and BUS stations are farther downstream from the glacier, at 1.5 and 1.15 km, respectively .