64 resultados para Indicators of bacterial pollution
Resumo:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Resumo:
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides (HuBacteroides)) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens, rotavirus and all pathogens combined. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary.
Resumo:
Anthropogenic impact on biomass of coastal plankton communities caused by submerged disposal of urban sewage waters (dumping) was studied. Observations were carried out in August-September of 2002-2004 in the Mamala Bay (Oahu Island, Hawaii Islands) using satellite and straight sea measurements. An analysis of variability of integral indicators of the water column determined on the basis of on-board measurements allowed us to divide them into two groups: elements most sensitive to pollution (heterotrophic bacteria (H-Bact), phototrophic cyanobacteria Synechococcus spp. (SYN), and chlorophyll a (CHLa)) and elements that manifested episodic positive dependence on inflow of polluted waters (heterotrophic unicellular eukaryotes, small unicellular algae, phototrophic green bacteria Prochlorococcus spp., as well as total biomass of microplankton). It was shown that submerged waste water disposal in the region of the diffuser of the dumping device led to insignificant (aver. 1.2-1.4 times) local increase in integral biomass of H-Bact, SYN, and in concentration of CHLa. Similar but sharper (aver. 1.5-2.1 times) increase in these parameters was found in water layers with maximal biomasses. Possible pathways of disposed waters (under the pycnocline, at its upper boundary, and in the entire mixed layer) were analyzed on the basis of studying vertical displacement of biomasses of H-Bact, SYN, and prochlorophytes. Possibility of using optical anomalies distinguished from satellite data as markers of anthropogenic eutrophication caused by dumping was confirmed. Application of such markers depends on water transparency and on shapes of curves of vertical distribution of autotrophic organisms.
Resumo:
Bacterial abundance, bacterial secondary production (BSP) and potential ectoproteolytic activity (PEA) were measured at 6 stations along the Strait of Magellan, South America, toward the end of summer 1995. Because of hydrological and climatic factors, 3 main areas could be identified in which the bacterial component displayed specific characteristics. In the Pacific Ocean side, subjected to freshwater inputs from rainfalls and melting of glaciers, the bacterial activities showed the highest values (BSP: 228.2 ng C/l h; PEA: 12.2 nmol/l h). The bacterial biomass was greater than the phytoplanktonic biomass, probably due to organic inputs from land stimulating the bacterial growth. The central part of the Strait demonstrated the lowest values (BSP: 32.6 ng C/l h, PEA: 4.6 nmol/l h), although the ratio of bacterial biomass to phytoplanktonic biomass was greater than 1. In the third area, the Atlantic Ocean opening, subjected to strong tidal currents, BSP and PEA displayed high values, 80 to 88.7 ng C/l h and 11.7 nmol/l h respectively. Nevertheless, the ratio of bacterial to phytoplanktonic biomass was less than 1, like in eutrophic areas. On the other hand, no impact of the tide was noted on bacterial parameters. Considering all samples measured in the 0 to 50 m layer, although BSP and PEA were positively correlated with bacterial abundance, the PEA to BSP ratio was negatively correlated with the bacterial biomass (r = -0.72, p < 0.001, n = 22). This ratio could be an indicator of trophic conditions in the 3 subsystems of the Strait.
Resumo:
The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.Methods: We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.Results: For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Conclusions: Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.
Resumo:
Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.
Resumo:
Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 µm, 5.3 µm and 15.9 µm) under ambient (250 µatm) or acidified (400 µatm) partial pressures of CO2 (pCO2). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 µm and 15.9 µm glucose addition at 250 µatm pCO2 was eliminated at 400 µatm pCO2. These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.
Resumo:
Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps, and upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis were used to characterize more than 200 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. The bacterial biofilm consisted predominantly of Alpha-, Gamma- and Deltaproteobacteria, as well as Cyanobacteria, Flavobacteriia and Cytophaga, whereas putative settlement-inducing taxa only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous with approximately 25% shared operational taxonomic units between samples. Among the observed environmental parameters, pH only had a weak effect on community composition (R² ~ 1%) and did not affect community richness and evenness. In contrast, there were strong differences between upper and lower surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms than changes in seawater pH.