464 resultados para Imaging Spectrometer Data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluctuations in oxygen (d18O) and carbon (d13C) isotope values of benthic foraminiferal calcite from the tropical Pacific and Southern Oceans indicate rapid reversals in the dominant mode and direction of the thermohaline circulation during a 1 m.y. interval (71-70 Ma) in the Maastrichtian. At the onset of this change, benthic foraminiferal d18O values increased and were highest in low-latitude Pacific Ocean waters, whereas benthic and planktic foraminiferal d13C values decreased and benthic values were lowest in the Southern Ocean. Subsequently, benthic foraminiferal d18O values in the Indo-Pacific decreased, and benthic and planktic d13C values increased globally. These isotopic patterns suggest that cool intermediate-depth waters, derived from high-latitude regions, penetrated temporarily to the tropics. The low benthic d13C values at the Southern Ocean sites, however, suggest that these cool waters may have been derived from high northern rather than high southern latitudes. Correlation with eustatic sea-level curves suggests that sea-level change was the most likely mechanism to change the circulation and/or source(s) of intermediate-depth waters. We thus propose that oceanic circulation during the latest Cretaceous was vigorous and that competing sources of intermediate- and deep-water formation, linked to changes in climate and sea level, may have alternated in importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A baited imaging lander was deployed six times in the Nazare Canyon at depths from 909 to 4361 m during August 2005 to investigate the demersal scavenging fishes. Species observed and lander-derived abundance estimates were similar to previous data from the Porcupine Seabight and abyssal plain, north-east Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlation of new multichannel seismic profiles across the upper Indus Fan and Murray Ridge with a dated industrial well on the Pakistan shelf demonstrates that ~40% of the Indus Fan predates the middle Miocene, and ~35% predates uplift of the Murray Ridge (early Miocene, ~22 Ma). The Arabian Sea, in addition to the Makran accretionary complex, was therefore an important repository of sediment from the Indus River system during the Paleogene. Channel and levee complexes are most pronounced after the early Miocene, coincident with an increase in sedimentation rates. Middle Eocene sandstones from Deep Sea Drilling Project Site 224 on the Owen Ridge yield K-feldspars whose Pb isotopic composition, measured by in situ ion microprobe methods, indicates an origin in, or north of, the Indus suture zone. This observation requires that India-Asia collision had occurred by this time and that an Indus River system, feeding material from the suture zone into the basin, was active soon after collision. Pleistocene provenance was similar to that during the Eocene, albeit with greater contribution from the Karakoram. A mass balance of the erosional record on land with deposition in the fan and associated basins suggests that only ~40% of the Neogene sediment in the fan is derived from the Indian plate.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibrous calcite veins with organic inclusions have been widely considered as indicators of oil and gas generation and migration under overpressure. Abundant fibrous calcite veins containing organic-bearing inclusions occur in faulted Lower Paleozoic through Triassic hydrocarbon source rocks in the Dabashan Foreland Belt (DBF). d13CPDB and d18OPDB values of the fibrous calcite range from - 4.8 to -1.9 to per mil and - 12.8 to - 8.4 per mil respectively, which is lighter than that of associated carbonate host rocks ranging from - 1.7 to + 3.1 per mil and - 8.7 to - 4.5 per mil. A linear relationship between d13CPDB and d18OPDB indicates that the calcite veins were precipitated from a mixture of basinal and surface fluids. The fibrous calcite contains a variety of inclusions, such as solid bitumen, methane bearing all-liquid inclusions, and vapor-liquid aqueous inclusions. Homogenization temperatures of aqueous inclusions range from 140 to 196° with an average of 179°. Salinities of aqueous inclusions average 9.7 wt% NaCl. Independent temperatures from bitumen reflectance and inclusion phase relationships of aqueous and methane inclusions were used to determine fluid pressures. Results indicate high pressures, elevated above typical lithostatic confining pressure, from 150 to 200 MPa. The elevated salinity and high temperature and pressure conditions of the fibrous calcite veins argue against an origin solely from burial overpressure resulting from clay transformation and dehydration reactions. Instead fluid inclusion P-T data and geochemistry results and regional geology indicate abnormally high pressures during fluid migration. These findings indicate that tectonic stress generated fracture and fault fluid pathways and caused migration of organic bearing fluids from the DBF during the Yanshan orogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the Cretaceous, widespread black shale deposition occurred during a series of Oceanic Anoxic Events (OAEs). Multiple processes are known to control the deposition of marine black shales, including changes in primary productivity, organic matter preservation, and dilution. OAEs offer an opportunity to evaluate the relative roles of these forcing factors. The youngest of these events-the Coniacian to Santonian OAE 3-resulted in a prolonged organic carbon burial event in shallow and restricted marine environments including the Western Interior Seaway. New high-resolution isotope, organic, and trace metal records from the latest Turonian to early Santonian Niobrara Formation are used to characterize the amount and composition of organic matter preserved, as well as the geochemical conditions under which it accumulated. Redox sensitive metals (Mo, Mn, and Re) indicate a gradual drawdown of oxygen leading into the abrupt onset of organic carbon-rich (up to 8%) deposition. High Hydrogen Indices (HI) and organic carbon to total nitrogen ratios (C:N) demonstrate that the elemental composition of preserved marine organic matter is distinct under different redox conditions. Local changes in d13C indicate that redox-controlled early diagenesis can also significantly alter d13Corg records. These results demonstrate that the development of anoxia is of primary importance in triggering the prolonged carbon burial in the Niobrara Formation. Sea level reconstructions, d18O results, and Mo/total organic carbon ratios suggest that stratification and enhanced bottom water restriction caused the drawdown of bottom water oxygen. Increased nutrients from benthic regeneration and/or continental runoff may have sustained primary productivity.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans**1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard-Oeschger and Heinrich events**2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial-interglacial cycle**1, 3, 4, 5, or lack an accurate chronology**6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere-ocean-vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.