51 resultados para Illinois Capital Access Program.
Resumo:
Within the monitoring programme of the Helsinki Commission (HELCOM) the mesozooplankton of the Bornholm Basin (ICES subdivision 25, station BMP-K2) was sampled by the WP-2 net (lOOfJm) 5-8 times a year in 1988-1992. Abundance, biomass, secondary production and productivity (P/B) were given for mesozooplankton groups and copepod species. Environmental factors recorded were temperature, chlorophyll a and primary production. Within copepods, the dominant species were Temora longicornis and Pseudocalanus minutus with yearly peak values of 40-50% of the monthly copepod numbers and biomasses. The annual production of Temora longicornis was highest (6.5g C/m**2/y). The biomass of all copepods was at its maximum in June (mean = 2.25g C/m**2), especially in 1992 (3.65g C/m**2). The differences between results from two methods used to calculate the production of copepods were greatest in June and July. The cladocerans were only important in summer and the appendicularians only in spring. The productivity (P/B) of the appendicularians was highest of all mesozooplankton groups. Numbers and the biomass of the meroplankton were one or two orders of magnitude below the holoplanktic groups.
Resumo:
Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 µm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.