55 resultados para High leakage rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basement at Ocean Drilling Program (ODP) Sites 677 and 678 originated from the Galapagos spreading center of the Costa Rica Rift and has moved about 200 km over the last 6 m.y. (Fig. 1) (Shipboard Scientific Party, 1987, 1988; Scientific Drilling Party, 1987). Sediments about 300 m thick cover basement so young that basal sediments at Sites 677 and 678 have been reheated up to 60?-70?C at Site 677 and altered to limestone and/or chert (Shipboard Scientific Party, 1988). Sediments from both sites indicate (1) a high sedimentation rate (about 48 m/m.y.) and (2) biogenic silica and carbonate as the main constituents of sediments (Table 1) (Shipboard Scientific Party, 1988). Heatflow observations and measurements of interstitial water chemistry around the sites show that Site 677 is in a lower heatflow zone (166 mW/m**2; 1°12.14'N, 83°44.22'W) whereas Site 678 is located in a zone of higher heat flow (250 mW/m**2; 1°13.01'N, 83°43.39'W) (Langseth et al., 1988; Shipboard Scientific Party, 1988). In the flank hydrothermal systems, circulating solution is moving upward through the sedimentary column in zones of higher heat flow while it is moving downward in zones of lower heat flow (Anderson and Skilbeck, 1981). The chemistry of the interstitial waters is modified by several processes such as (1) diagenetic reactions and (2) advective and (3) diffusive transports of dissolved constituents. Analyses of Ca2+ and Mg2+ in interstitial waters from Sites 677 and 678 show that their profiles are mainly controlled by advective transport (Shipboard Scientific Party, 1988). In contrast, the interstitial-water profiles for NH4+, Si, and PO4[3-] are highly affected by reactions in the sediments. Site 677 offers a good opportunity to investigate amino acids in the interstitial waters because sediments of similar compositions have been deposited at constant rates of sedimentation. There are few previous works on amino acid distributions in interstitial waters (Henrichs and Parrington, 1979; Michaelis et al., 1982; Henrichs et al., 1984; Henrichs and Farrington, 1987; Ishizuka et al., 1988). In this chapter, we report (1) Rock-Eval analysis and (2) the composition of total hydrolyzable and dissolved free amino acids (THAA and DFAA, respectively) in the interstitial waters. Our objectives are to discuss (1) the possible origin of organic materials, (2) the characteristics of THAA and DFAA, and (3) their relationships in interstitial waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The d18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ~4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern d18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial d18O changes of at least 2.2 per mil, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ~2.3 km, glacial d13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, d13C decreased continually to -0.5 per mil, about equal to the lowest LGM d13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores >2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ~1500 years at 4250 m and at ~4700 m. Apparent ventilation ages are presently unavailable for the LGM < 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM d13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages <2.3 km water depth were about the same as North Atlantic Deep Water today. Below ~2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photogrammetric reanalysis of 1985 aerial photos has revealed substantial submarine melting of the floating ice tongue of Jakobshavn Isbrae, west Greenland. The thickness of the floating tongue determined from hydrostatic equilibrium tapers from ~940 m near the grounding zone to ~600 m near the terminus. Feature tracking on orthophotos shows speeds on the July 1985 ice tongue to be nearly constant (~18.5 m/d), indicating negligible dynamic thinning. The thinning of the ice tongue is mostly due to submarine melting with average rates of 228 ± 49 m/yr (0.62 ± 0.13 m/d) between the summers of 1984 and 1985. The cause of the high melt rate is the circulation of warm seawater (thermal forcing of up to 4.2°C) beneath the tongue with convection driven by the substantial discharge of subglacial freshwater from the grounding zone. We believe that this buoyancy-driven convection is responsible for a deep channel incised into the sole of the floating tongue. A dramatic thinning, retreat, and speedup began in 1998 and continues today. The timing of the change is coincident with a 1.1°C warming of deep ocean waters entering the fjord after 1997. Assuming a linear relationship between thermal forcing and submarine melt rate, average melt rates should have increased by ~25% (~57 m/yr), sufficient to destabilize the ice tongue and initiate the ice thinning and the retreat that followed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New surface water records from two high sedimentation rate sites, located in the western subtropical North Atlantic near the axis of the Gulf Stream, provide clear evidence of suborbital climate variations through marine isotope stage (MIS) 5 persisting even into the warm peak of the interglaciation (substage 5e). We found that the amplitude of suborbital climate oscillations did not vary significantly for the whole of MIS 5, implying that ice volume has little or no influence on the amplitude of suborbital climate variability in this region. Although some records suggest that longer suborbital variations (4-10 kyr) during MIS 5 are linked to deepwater changes, none of the existing records is of sufficient resolution to assess if a linkage occurred for oscillations shorter than 4 kyr. However, when examined in conjunction with published data from the Norwegian Sea, new evidence from the subpolar North Atlantic suggests that coupled surface-deepwater oscillations occurred during the penultimate deglaciation. This supports the hypothesis that during glacial and deglacial times, ocean-ice interactions and deepwater variability amplify suborbital climate change at higher latitudes. We suggest that during the penultimate deglaciation the North Atlantic deepwater source varied between Nordic Sea and open North Atlantic locations, in parallel with surface temperature oscillations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km**2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26 ± 15 mmol C/m**2/d, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies (~60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geophysical data acquired using R/V Polarstern constrain the structure and age of the rifted oceanic margin of West Antarctica. West of the Antipodes Fracture Zone, the 145 km wide continent-ocean transition zone (COTZ) of the Marie Byrd Land sector resembles a typical magma-poor margin. New gravity and seismic reflection data indicates initial continental crust of thickness 24 km, that was stretched 90 km. Farther east, the Bellingshausen sector is broad and complex with abundant evidence for volcanism, the COTZ is ~670 km wide, and the nature of crust within the COTZ is uncertain. Margin extension is estimated to be 106-304 km in this sector. Seafloor magnetic anomalies adjacent to Marie Byrd Land near the Pahemo Fracture Zone indicate full-spreading rate during c33-c31 (80-68 Myr) of 60 mm/yr, increasing to 74 mm/yr at c27 (62 Myr), and then dropping to 22 mm/yr by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates initial oceanic crust formation at around c34y (84 Myr). Subsequent motion of the Bellingshausen plate relative to Antarctica (84-62 Myr) took place east of the Antipodes Fracture Zone at rates <40 mm/yr, typically 5-20 mm/yr. The high extension rate of 30-60 mm/yr during initial margin formation is consistent with steep and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate was slow and complex, and modified rift morphology through migrating deformation and volcanic centers to create a broad and complex COTZ.