120 resultados para Hellenistic period


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main characteristics of the Vernagtferner mass balance are sumarized in the table below. The mass balance years from 1964/65 to 2003/2004 are listed. The table includes the total area of the glacier (basis for the calculations), the equilibrium line altitude (ELA), percentage of the accumulation area in relation to the total area (AAR) and the specific net mass balance in mm w.e. (water equivalent) per year. It becomes clear that, after a rather minor growth period in the mid 1970's, the glacier continually lost mass since the beginning of the 1980's. Besides that, a clear increase of mass balance years with extreme mass losses could be observed in the last decade. The "glacier-friendly" summer with a well-balanced mass balance in 1999 could only interrupt the series of years with extreme mass losses, but this means no change in the trend. The minor mass loss in 1999 was caused by a winter snow cover above average, which prevented the glacier from becoming snow free over large areas and thus resulted in a lower ice melt. Although real summer conditions in 2000 were mainly restricted to August and produced a snow free area only slightly larger than in 1999, there have been further ice losses. This trend of negative mass balance continued also in the years 2001 and 2002. Nevertheless, the losses are moderate because a smaller part of the glacier became ice free until autumn (appr. 50 %). The summer 2003 caused a loss of ice in a dimension never seen since the beginning of the scientific investigations. This resulted from a combination of different factors: after only a moderate winter snowcover the glacier became snow free very early. For the first time the ablation area spanned over the entire glacier (blue fields in the mass balance tables!). Only one short snowfall event interrupted the ablation period, which lasted twice as long as in the years of large losses in the 1990's. The extreme mass loss in 2003 will also influence the mass balance in the following year 2004. The graphical representation of the elevation distribution of the specific mass balance together with the absolute mass balance can be found individually for each year by choosing one of the mass balance values from the table. These diagrams also include the area-height-distribution of the glacier and the ablation area. A tabular version of the numeric values in dependence of the elevation, provided separately for the accumulation area, the ablation area and the total glacier, can be found in colums "Persistent Identifier". The tables include the results for three different parts of the glacier and for the total glacier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mid-Piacenzian (MP) warm period (3.264-3.025 Ma) has been identified as the most recent time in geologic history during which mean global surface temperatures were considerably warmer than today for a sustained period. This interval has therefore been proposed as a potential (albeit imperfect) analog for future climate change and as such, has received much scientific attention over the past two decades. Central to this research effort is the Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project, an iterative paleoenvironmental reconstruction of the MP focused on increasing our understanding of warm-period climate forcings, dynamics, and feedbacks by providing three-dimensional data sets for general circulation models. A mainstay of the PRISM project has been the development of a global sea surface temperature (SST) data set based primarily upon quantitative analyses of planktic foraminifer assemblages, supplemented with geochemical SST estimates wherever possible. In order to improve spatial coverage of the PRISM faunal data set in the low and mid-latitude North Atlantic, this study provides a description of the MP planktic foraminifer assemblage from five Ocean Drilling Program sites (951, 958, 1006, 1062, and 1063) in the subtropical gyre, a region critical to Atlantic Ocean circulation and tropical heat advection. Assemblages from each core provide evidence for a temperature- and circulation-driven 5-10° northward displacement of MP faunal provinces, as well as regional shifts in planktic foraminifer populations linked to species ecology and interactions. General biogeographic trends also indicate that, relative to modern conditions, gyre circulation was stronger (particularly the Gulf Stream, North Atlantic Current, and North Equatorial Current) and meridionally broader. A comparison of mid-Piacenzian and modern North Atlantic planktic foraminifer assemblages suggests that low latitude western boundary currents were less than 1 °C warmer while eastern boundary currents were ~1-2 °C warmer, supporting the hypothesis of enhanced northward heat advection along western boundary currents and warming of high latitude Northeast Atlantic source regions for the Canary Current. These findings are consistent with a model of reduced meridional SST gradients, with little-to-no low latitude warming, and more vigorous ocean circulation. Results therefore support the theory that enhanced meridional overturn circulation and associated northward heat advection made an important contribution, in conjunction with elevated atmospheric CO2 concentrations, to the 2-3 °C global surface temperature increase (relative to today) and strong polar amplification of SST warmth during the MP warm period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The El Niño/ Southern Oscillation (ENSO) phenomenon is the strongest known natural interannual climate fluctuation. The most recent two extreme ENSO events of 1982/83 and 1997/98 severley hit the socio-economy of main parts of Indonesia. As the climate variability is not homogeneous over the whole Archipelago of Indonesia, ENSO events cause negative precipitation anomalies of diverse magnitude and uration in different regions. Understanding the hydrology of humid tropical catchments is an essential prerequisite to investigate the impact of climate variability on the catchment hydrology. Together with the quantitative assessment of future water resource changes they are essential tools to develop mitigation strategies on a catchment scale. These results can be integrated into long term Integrated Water Resource Management (IWRM) strategies. The general objective of this study is to investigate and quantify the impact of ENSO caused climate variability on the water balance and the implications for water resources of a mesoscale tropical catchment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first studies of microalgae fluxes over the Lomonosov Ridge in the northern Laptev Sea were carried out with a sediment trap at the year-long mooring station LOMO-2, installed at 150 m depth from September 15, 1995 to August 16, 1996. These studies demonstrated essential seasonal variations of vertical microalgae flux. It was shown that in summer diverse flora (composed mainly of cryophylic diatoms) growed intensively beneath the permanent ice cover. Strongly pronounced seasonal variations of microalgae growth correlate closely with solar radiation. Exactly during the maximum insolation period, from the middle of July until the end of September, the microalgae flux was hundreds of times higher than that in the rest of the year. Summer values of the microalgae flux over the Lomonosov Ridge in the northern Laptev Sea were similar to those in the Weddell Sea (Antarctic) and exceeded summer flux values in the Norwegian and Greenland Seas and in the St. Anna Trough (northwestern Kara Sea).