675 resultados para Hawthorne, Nathaniel
Resumo:
Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive continental shelves surrounding the Antarctic continent. However, the polynyas of the Amundsen Sea harbor the highest concentrations of phytoplankton anywhere in Antarctica. Here we present data showing the likely sources of Fe that enable such a productive and long lasting phytoplankton bloom. Circumpolar Deep Water (CDW) flows over the bottom of the shelf into the Pine Island Bay where DFe and TDFe were observed to increase from 0.2 to 0.4 nM DFe and from 0.3-4.0 to 7-14 nM TDFe, respectively. At the southern end of Pine Island Bay, the CDW upwelled under the Pine Island Glacier, bringing nutrients (including Fe) to the surface and melting the base of the glacier. Concentrations of DFe in waters near the Pine Island Glacier and the more westward lying Crosson, Dotson, and Getz Ice Shelves varied between 0.40 and 1.31 nM, depending on the relative magnitude of upwelling, turbulent mixing, and melting. These values represent maximum concentrations since associated ligands (which increase the solubility of Fe in seawater) were saturated with Fe (Thuroczy et al., 2012, doi:10.1016/j.dsr2.2012.03.009). The TDFe concentrations were very high compared to what previously has been measured in the Southern Ocean, varying between 3 and 106 nM. In the Pine Island Polynya, macronutrients and DFe were consumed by the phytoplankton bloom and concentrations were very low. We calculate that atmospheric dust contributed < 1% of the Fe necessary to sustain the phytoplankton bloom, while vertical turbulent eddy diffusion from the sediment, sea ice melt, and upwelling contributed 1.0-3.8%, 0.7-2.9%, and 0.4-1.7%, respectively. The largest source was Fe input from the PIG, which could satisfy the total Fe demand by the phytoplankton bloom by lateral advection of Fe over a range of 150 km from the glacier. The role of TDFe as a phytoplankton nutrient remains unclear, perhaps representing an important indirect Fe source via dissolution and complexation by dissolved organic ligands (Gerringa et al., 2000, doi:10.1016/S0304-4203(99)00092-4; Borer et al., 2005, doi:10.1016/j.marchem.2004.08.006).
Resumo:
We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3? was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3?/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U/[?g chl a] (mean 4.1). Measurements of short-term C-fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half-saturation constant for inorganic carbon uptake (K1/2) of ~380 ?M. Comparison of our early springtime results with published data from late-season Ross Sea assemblages showed that neither HCO3? utilization nor eCA activity was significantly correlated to ambient CO2 levels or phytoplankton taxonomic composition. We did, however, observe a strong negative relationship between surface water pCO2 and short-term 14C-fixation rates for the early season survey. Direct incubation experiments showed no statistically significant effects of pCO2 (10 to 80 Pa) on relative HCO3? utilization or eCA activity. Our results provide insight into the seasonal regulation of C uptake by Ross Sea phytoplankton across a range of pCO2 and phytoplankton taxonomic composition.