164 resultados para Hauing intensification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pliocene-Holocene sediments recovered on ODP Leg 114 from Holes 699A, 701C, and 704B are the subject of a detailed investigation to interpret changes in the Oceanographic environment of the South Atlantic in the vicinity of the Polar Front Zone (PFZ). The cores sample sediments at shallow (Hole 704B, 2532 m), intermediate (Hole 699A, 3716 m), and basinal (Hole 701C, 4647 m) depths. Sites 699 and 704 come under the influence of the Antarctic Circumpolar Current (ACC) and Circumpolar Deep Water. It is possible that the upper reaches of Antarctic Bottom Water (AABW) may also affect Hole 699A. Site 701 is influenced by AABW. Closely spaced samples were analyzed for grain-size distribution, sand fraction components, biosiliceous microfossils, organic carbon, and water content. PFZ migrations are traced using changes in bulk sedimentaccumulation rates and the abundance of the diatoms Actiniscus ssp. and Genus et species indet. 1 Fenner (1991), as well as changes in sediment grain size and composition. Diatomaceous sediments of Gilbert age in Hole 699A indicate that the PFZ was positioned over this site, but during the Gauss it migrated north, bringing in less productive Antarctic Surface Water. All cores document a very gradual southerly movement of the PFZ throughout the Matuyama (with some sharp fluctuations of the northen PFZ border over Site 704 between 1.45 and 1.83 m.y.). This regressive shift culminated in the late Matuyama. The latest Matuyama to earliest Brunhes record in Hole 699A has been removed by a hiatus lasting from 1.0 to 0.6 m.y., which was probably caused by intensification of the deep-reaching ACC. The corresponding interval in Hole 704B, the shallowest core, contains evidence of winnowing. Sharp fluctuations of large amplitude and high frequency in the lithology of the sediments from Hole 704B in the eastern South Atlantic, starting at about 0.75 m.y. and characterizing the whole Brunhes Epoch, record the rapid movement of the northern border of the PFZ over the site. These reflect strong glacial/interglacial alternations in climate. To a lesser extent, lithologic fluctuations in Hole 701C reflect the same phenomenon, whereas in Hole 699A the lithology does not vary as dramatically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution, accelerator mass spectroscopy 14C dated sediment record from the Sulu Sea clearly indicates that the Younger Dryas event affected the western equatorial Pacific. Planktonic foraminiferal delta18O and abundance data both record significant changes during Younger Dryas time. In particular, a 0.4 per mil increase in the delta18O value of Globigerinoides ruber and the reappearance of the cool water planktonic foraminifera, Neogloboquadrina pachyderma, occur during the Younger Dryas at this location. These isotopic and faunal changes are a response to either surface water temperature or salinity changes, or some combination of the two. Changes in surface salinities could have been accomplished through either local or global processes. Intensification of the monsoon climate system and increased precipitation at approximately 11 ka is one mechanism that may have resulted in local changes in salinity. A meltwater pulse derived from the Tibetan Plateau is another mechanism which may have caused local changes in salinity. The presence of the Younger Dryas in the tropical western Pacific clearly indicates that this climatic event is not restricted to the North Atlantic or high latitudes, but rather is global in extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The moist evergreen Afromontane forest of SW Ethiopia has become extremely fragmented and most remnants are intensively managed for cultivation of coffee (Coffea arabica). We investigated the distributions of epiphytic orchids in shade trees and their understory in forests with contrasting management intensity to determine biodiversity losses associated with coffee cultivation and to determine the capacity of coffee shrubs to act as refugia for orchid species. We studied epiphytic orchids in managed forests and natural forests and recorded orchid diversity and abundance in different tree zones of 339 trees and in the understory. Coffee management was associated with a downward shift of orchid species as orchid species were occurring in significantly lower tree zones in managed forest. The number of shrubs in the understory of managed forest was not higher than in natural forests, yet orchid abundance was higher in the understory of managed forests. Local extinctions of epiphytic orchids and species losses in the outer tree zones (a contraction of habitat) in managed forests are most likely driven by losses of large, complex-structured climax trees, and changes in microclimate, respectively. Coffee shrubs and their shade trees in managed forests are shown here to be a suitable habitat for only a limited set of orchid species. As farmers continue to convert natural forest into managed forest for coffee cultivation, further losses of habitat quality and collateral declines in regional epiphytic orchid diversity can be expected. Therefore, the conservation of epiphytic orchid diversity, as well as other components of diversity of the coffee forests, must primarily rely on avoiding coffee management intensification in the remaining natural forest. Convincing farmers to keep forest-climax trees in their coffee forest and to tolerate orchids on their coffee shrubs may also contribute to a more favorable conservation status of orchids in Ethiopian coffee agroecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the New Jersey Coastal Plain, a silty to clayey sedimentary unit (the Marlboro Formation) represents deposition during the Paleocene-Eocene thermal maximum (PETM). This interval is remarkably different from the glauconitic sands and silts of the underlying Paleocene Vincentown and overlying Eocene Manasquan Formation. We integrate new and published stable isotope, biostratigraphic, lithostratigraphic and ecostratigraphic records, constructing a detailed time frame for the PETM along a depth gradient at core sites Clayton, Wilson Lake, Ancora and Bass River (updip to downdip). The onset of the PETM, marked by the base of the carbon isotope excursion (CIE), is within the gradual transition from glauconitic silty sands to silty clay, and represented fully at the updip sites (Wilson Lake and Clayton). The CIE "core" interval is expanded at the updip sites, but truncated. The CIE "core" is complete at the Bass River and Ancora sites, where the early part of the recovery is present (most complete at Ancora). The extent to which the PETM is expressed in the sediments is highly variable between sites, with a significant unconformity at the base of the overlying lower Eocene sediments. Our regional correlation framework provides an improved age model, allowing better understanding of the progression of environmental changes during the PETM. High-resolution benthic foraminiferal data document the change from a sediment-starved shelf setting to a tropical, river-dominated mud-belt system during the PETM, probably due to intensification of the hydrologic cycle. The excellent preservation of foraminifera during the PETM and the lack of severe benthic extinction suggest there was no extreme ocean acidification in shelf settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution pollen record (sampling interval averages 820 years) has been obtained from ODP Site 1144 (water depth 2037 m), northern South China Sea. The 504-m sequence (in composition length) covers the last 1.03 million years according to micropaleontological and isotopic stratigraphy. The pollen assemblages are characterized by high proportions of Pinus and herb pollen, and by their frequent alternations. Based on these alternations, 29 pollen zones have been recognized that are closely correlated to the Marine Oxygen Isotope Stages (MIS) 1-29. Pinus- dominant pollen zones correspond to interglacial periods with lighter delta18O values, while herb-marked ones relate to the heavier delta18O stages assigned to glacials. Judging from the pollen data, the exposed northern continental shelf of the South China Sea during the glacials was covered by grassland, and the extensive northern shelf has formed only since MIS 6 (ca. 150 ka), probably as a result of tectonic subsidence. Tree pollen influx values are indicative of winter monsoon which began to intensify 600 ka ago. The summer monsoon variations can be approximated by the fern percentage within the total pollen and spore abundance, and the result shows high values in general occurring at interglacials, with the maxima at MIS 15, 5e and 1. The relatively high fern percentage with smaller amplitude in variations before 600 ka might suggest more stable humid conditions before the intensification of winter monsoon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dinoflagellate cysts were recovered throughout the Paleogene succession of Hole 647A, which contains an almost complete deep-water record of early Eocene through early late Oligocene sedimentation in the Labrador Sea. Dinoflagellate cyst biostratigraphy is in general accord with that provided by other microfossil groups and is consistent with a lower Eocene age, as determined by nannofossils, for basal sediments in Hole 647A. These sediments overlie oceanic crust of Chron 24 age. Dinocyst assemblages indicate outer neritic to oceanic conditions throughout, although the persistent occurrence of Wetzeliellaceae specimens in the lower Eocene suggests a greater influence from shelf environments during this time. Lower Eocene dinocyst assemblages are similar to coeval assemblages from the Rockall Plateau, but those from the middle to upper Eocene have mixed affinities and may be related to the intensification of the proto-Gulf Stream from middle Eocene time. Oligocene dinocyst assemblages suggest the influence of both arctic and North Atlantic wate rmasses at this site. The presence of protoperidineacean species in the upper Eocene and Oligocene may indicate increased availability of nutrients, perhaps related to increased upwelling or the effects of water-mass mixing. Productive samples are dominated by dinocysts and acritarchs, while sporomorphs are represented mainly by bisaccate pollen. Preservational differences within samples may reflect mixing of penecontemporaneous dinocyst populations during the Eocene, and all samples examined may have a considerable allochthonous component. Variability in relative abundance of many species during the Eocene may be related to fluctuating water-mass properties. A total 175 dinocyst and acritarch taxa were recorded from 53 productive samples from the Paleogene. Only one Paleogene sample was barren of palynomorphs. Of three Miocene samples processed, all were barren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precipitation has a larger variability than temperature in tropical monsoon regions, thus it is an important climate variable. However, reconstructions of long-term rainfall histories are scarce because of the lack of reliable proxies. Here we document that iron oxide minerals, specifically the ratio of hematite to goethite (Hm/Gt), is a reasonable precipitation proxy. Using diffuse reflectance spectrophotometry, we measured samples from Ocean Drilling Program (ODP) 1143 drilling site (9°21.72'N, 113°17.11'E, 2777 m water depth) for hematite and goethite, whose formation processes are favored by opposing climate conditions. In order to determine the content of hematite and goethite we produced a set of calibration samples by removing the iron oxides to generate the natural matrix to which hematite and goethite in known percentages were added. From these calibration samples we developed a transfer function for determining hematite and goethite concentration from a sample's spectral reflectance. Applying this method to ODP 1143 sediments (top 34 m of a 510 m core with sampling interval of 10 cm) we were able to reconstruct a continuous precipitation history for SE Asia of the past 600 kyr using the Hm/Gt ratio as a proxy of the precipitation variability of Asian monsoon. The reliability of this Hm/Gt proxy is corroborated by its consistency with the stalagmite delta18O data from South China. Comparing long-term Hm/Gt records with the surface temperature gradient of equatorial Pacific Ocean, we found that monsoon precipitation and El Niño are correlated for the last 600 kyr. The development of El Niño-like conditions decreased SE Asia precipitation, whereas precipitation increases in response to La Niña intensification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 6200 year old peat sequence, cored in a volcanic crater on the sub-Antarctic Ile de la Possession (Iles Crozet), has been investigated, based on a multi-proxy approach. The methods applied are macrobotanical (mosses, seeds and fruits) and diatom analyses, complemented by geochemical (Rock-Eval6) and rock magnetic measurements. The chronology of the core is based on 5 radiocarbon dates. When combining all the proxy data the following changes could be inferred. From the onset of the peat formation (6200 cal yr BP) until ca. 5550 cal yr BP, biological production was high and climatic conditions must have been relatively warm. At ca. 5550 cal yr BP a shift to low biological production occurred, lasting until ca. 4600 cal yr BP. During this period the organic matter is well preserved, pointing to a cold and/or wet environment. At ca. 4600 cal yr BP, biological production increased again. From ca. 4600 cal yr BP until ca. 4100 cal yr BP a 'hollow and hummock' micro topography developed at the peat surface, resulting in the presence of a mixture of wetter and drier species in the macrobotanical record. After ca. 4100 cal yr BP, the wet species disappear and a generally drier, acidic bog came into existence. A major shift in all the proxy data is observed at ca. 2800 cal yr BP, pointing to wetter and especially windier climatic conditions on the island probably caused by an intensification and/or latitudinal shift of the southern westerly belt. Caused by a stronger wind regime, erosion of the peat surface occurred at that time and a lake was formed in the peat deposits of the crater, which is still present today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first International Polar Year (IPY) was an international effort to perform continous meteorological and geophysical observations over a time period of two years (1882-1883). Eleven nations established twelve research stations in the Arctic along with thirteen auxilary stations. Two stations were operated on the southern hemisphere (South Georgia and Tierra del Fuego). The data were published in 26 volumes on 8700+ pages of reports, descriptions, tables and graphs in total. The list of meteorological parameters includes temperature, wind, pressure, clouds, precipitation, evaporation, humidity and radiation. In the light of Global Change and the intensification of observations and continous measurements in both polar regions, long-time series increase in importance. The observations of the first IPY from the 19th century enable us to extend the data from the 20th century even more back into the past. In the occasion of the fourth IPY (2007-2009) WDC-MARE decided to digitize the complete set of meteorological data in full hourly resolution and publish it in its reports and make it available in Open Access via the data library PANGAEA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations in carbonate flux and dissolution, which occurred in the equatorial Atlantic during the last 24,000 years, have been estimated by a new approach that allows the point-by-point determination of paleofluxes to the seafloor. An unprecedented time resolution can thus be obtained which allows sequencing of the relatively rapid events occurring during deglaciation. The method is based on observations that the flux of unsupported 230Th into deep-sea sediments is nearly independent of the total mass flux and is close to the production rate. Thus excess 230Th activity in sediments can be used as a reference against which fluxes of other sedimentary components can be estimated. The study was conducted at two sites (Ceará Rise; western equatorial Atlantic, and Sierra Leone Rise; eastern equatorial Atlantic) in cores raised from three different depths at each site. From measurements of 230Th and CaCO3, changes in carbonate flux with time and depth were obtained. A rapid increase in carbonate production, starting at the onset of deglaciation, was found in both areas. This event may have important implications for the postglacial increase in atmospheric CO2 by increasing the global carbonate carbon to organic carbon rain ratio and decreasing the alkalinity of surface waters (and possibly the North Atlantic Deep Water). Increased carbonate dissolution occurred in the two regions during deglaciation, followed by a minimum during mid-Holocene and renewed intensification of dissolution in late Holocene. During the last 16,000 years, carbonate dissolution was consistently more pronounced in the western than in the eastern basin, reflecting the influence of Antarctic Bottom Water in the west. This trend was reversed during stage 2, possibly due to the accumulation of metabolic CO2 below the level of the Romanche Fracture Zone in the eastern basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate changes in the delivery and oceanic transport of Amazon sediments related to terrestrial climate variations over the last 250 ka. We present high-resolution geochemical records from four marine sediment cores located between 5 and 12° N along the northern South American margin. The Amazon River is the sole source of terrigenous material for sites at 5 and 9° N, while the core at 12° N receives a mixture of Amazon and Orinoco detrital particles. Using an endmember unmixing model, we estimated the relative proportions of Amazon Andean material ("%-Andes", at 5 and 9° N) and of Amazon material ("%-Amazon", at 12° N) within the terrigenous fraction. The %-Andes and %-Amazon records exhibit significant precessional variations over the last 250 ka that are more pronounced during interglacials in comparison to glacial periods. High %-Andes values observed during periods of high austral summer insolation reflect the increased delivery of suspended sediments by Andean tributaries and enhanced Amazonian precipitation, in agreement with western Amazonian speleothem records. Increased Amazonian rainfall reflects the intensification of the South American monsoon in response to enhanced land-ocean thermal gradient and moisture convergence. However, low %-Amazon values obtained at 12° N during the same periods seem to contradict the increased delivery of Amazon sediments. We propose that reorganizations in surface ocean currents modulate the northwestward transport of Amazon material. In agreement with published records, the seasonal North Brazil Current retroflection is intensified (or prolonged in duration) during cold substages of the last 250 ka (which correspond to intervals of high DJF or low JJA insolation) and deflects eastward the Amazon sediment and freshwater plume.