123 resultados para Geomorphological subdivision


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miocene to Recent species of planktic foraminifera in the Globorotalia (Globoconella) lineage evolved entirely within the thermocline. All species are most abundant within subtropical-temperate watermasses throughout their history. The near stasis in distribution within the thermocline and the subtropical convergence suggests the major morphological changes in Globorotalia (Globoconella) may have occurred through habitat subdivision rather than by vicariant shifts into new watermasses. At the Rio Grande Rise, in the South Atlantic, modern G. inflata is 0.66-0.84? more positive for delta18O than the most enriched coexisting Globigerinoides sacculifer and probably grows in the mid thermocline deeper than 325 m. All extinct globoconellid species have mean delta18O ratios 0.5-0.8? more positive than Globigerinoides trilobus and G. sacculifer and probably lived within the thermocline as well. Major events in skeletal evolution are poorly correlated with changes in delta18O in this group. These include evolutionary transitions to compressed, smooth-walled tests and acquisition of keels. In addition, morphological reversals from the umbilically-inflated G. conomiozea to biconvex G. pliozea and to unkeeled G. puncticulata occur in the absence of changes in delta18O signature. Instead, the ranges of delta18O between different species almost completely overlap once corrected for temporal changes in delta18O of sea water. Foraminifera morphologies have been widely considered to evolve in response to changes in watermasses or depth habitats. However, the variety of skeletal shapes in the globoconellid lineage apparently are not adaptations to a progressive radiation from the surface mixed layer into deeper waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sør Rondane Mountains (SRM) in eastern Dronning Maud Land (DML) are located in an area, where two apparent Pan-African (650-520 Ma) orogenic mobile belts appear to intersect, the East African-Antarctic Orogen and the Kuunga Orogen. Hence, a better understanding of the tectonic structure of the Sør Rondane region is an important key for unravelling the complex geodynamic evolution of the eastern DML and adjacent regions of East Antarctica during the Late Neoproterozoic/Early Palaeozoic amalgamation of Gondwana. The SRM were recently (2011-2012) aerogeophysically investigated with a 5 km flight line spacing, covering a total area of ~140,000 km². The aeromagnetic data are correlated with ground-based magnetic susceptibility measurements and geological field data and allow to project tectonic terranes and individual structures into ice-covered areas. Magnetic anomalies and basement foliation trends are collinear in areas dominated by simple shear deformation, whereas an area of large-scale refolding correlates with a subdued small-scale broken magnetic anomaly pattern. The latter area can be regarded as a distinct tectonic domain, the central Sør Rondane corridor. It magnetically separates the SRM into an eastern, a central, and a western portion. This subdivision is presumably related to late Pan-African extensional tectonics and suggests that such a tectonic regime may play a larger role than previously assumed. Voluminous late Pan-African granitoids, which are mainly undeformed, correlate with positive magnetic anomalies between +30 and +80 nT, while a strong magnetic high (+680 nT) near the granitic intrusion at Dufekfjellet is caused by a highly magnetised enigmatic body. The recently discovered prominent magnetic anomaly province of southeastern DML continues into the southern part of the Sør Rondane region, where only a few outcrops are exposed. Findings at these westernmost nunataks of the SRM indicate that the subdued magnetic anomaly pattern of this southeastern DML province is most likely caused by the predominance of metasedimentary rocks of yet unknown age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktonic foraminiferal and nannoplankton stratigraphy of the Pliocene-Quatemary Sediments of the northern half of the Atlantic Ocean from the equator up to the Rockall Plateau and the Norwegian Sea, is considered. Lowlatitude zonations were used for the subdivision of the Pliocene and Quaternary Sediments of different climatic belts, and certain subglobal zonal units were recognized. Variations in the degree of resolution of the zonation in different latitudes were revealed; the resolution of zonal scales based on calcareous plankton diminishes northwards. Changes of taxonomic composition of the zonal foraminifer and nannoplankton assemblages within various latitudinal belts of the Atlantic were analyzed taking into consideration the influence of climatic factors and of local bionomic conditions. Correlation with the magnetostratigraphic time-scale permitted the establishment of the most reliable appearance and disappearance datums (datum planes) of planktonic foraminifer and nannoplankton species. Paleontologic plates demonstrate some guide forms of two groups of calcareous plankton, and a short description of the taxa is given in the text. Major stratigraphic problems of Pliocene and Quaternary marine deposits are discussed. The monograph can be used in different geological investigations by specialists in geology, paleontology, and oceanology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on benthic and planktic foraminifera, Bolboforma, oxygen isotope measurements and seismic data, major changes in Miocene, Pliocene and Pleistocene paleoenvironments on the mid Norwegian shelf are discussed and a possible scenario of the late Cenozoic uplift history is given. The dating of the Neogene sequence has been done using foraminifera and Bolboforma. Four main assemblage zones have been identified with nine distinct subzones. Most of the Miocene sequence is preserved. The lower Miocene sediments contain only siliceous microfossils. A period of high fertility and upwelling in the study area prevailed. The early Miocene-early mid Miocene (15 Ma?) change from a siliceous to a calcareous rich microfauna, dominated by Nonion barleeanum, can be related to increased surface-water circulation due to overflow across the Iceland-Faeroe ridge. During the Miocene the temperature decreased in the study area. Evidence of increased amounts of coarser sediments may suggest that an uplift of the mainland areas occurred during the mid-late Miocene. Lower Pliocene sediments contain a foraminiferal fauna that seems to occur in slightly colder conditions than the late Miocene fauna suggesting a further cooling. Possibly, Arctic waters entered the study area in the early Pliocene. A very marked change in lithology (from compacted claystone to unconsolidated diamicton), fauna (from deep dwelling to shallow dwelling species) and seismic signature (from flat lying reflectors to prograding clinoforms) occurs during the mid?-late Pliocene. A two step cooling trend is indicated by the microfauna of these prograding wedges. (1) The first wedge buildups might have been associated with an uplift of the mainland during the early late Pliocene (mid Pliocene, ca. 4 Ma). However, the age determination is somewhat uncertain and may very well be of late Pliocene age. (2) The second step of wedge buildup is associated with a glacial phase where the dominating microfauna exists of arctic species. Large continental ice sheets might have occurred at this time reaching coastal areas and that possibly many of the geomorphological features such as the strandflat were made during this episode. The Pleistocene epoch is represented by an increased percentage of boreal foraminifera intermingled with high arctic species which indicates that interglacial-glacial cycles prevailed and the dynamics of the glacier system changed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Oligocene to late Pliocene vertical water-mass stratification along depth traverses in the northern Indian Ocean is depicted in this paper by benthic foraminifer index faunas. During most of this time, benthic faunas indicate well-oxygenated, bottom-water conditions at all depths except under the southern Indian upwelling and in the Pliocene in the southern Arabian Sea. Faunas suggest the initiation of lower oxygen conditions at intermediate depths in the northern Indian Ocean beginning in Oligocene Zone P21a. Lower oxygen conditions intensified during primary productivity pulses, possibly related to increased upwelling vigor, in the latest Oligocene and throughout most of the late middle through late Miocene. During times of elevated primary production, there may be more oxygen flux into sedimentary pore waters and the shallow infaunal habitat may become more oxygenated. One criterion for locating the source of "new" water masses is vertical homogeneity of benthic foraminifer indexes for well-oxygenated water masses from intermediate through abyssal depths. In the northern Mascarene Basin, this type of faunal homogeneity with depth corroborates the proposal that the northern Indian Ocean was an area of sinking well-oxygenated waters through most of the Miocene before Zone N17. Oxygenated, possibly "new" intermediate-water masses in the low- to middle-latitude Mascarene and Central Indian basins first developed in the late Oligocene. These well-oxygenated waters were probably more fertile than the Antarctic Intermediate Waters (AAIW) that cover intermediate depths in these areas today. Production of intermediate waters more similar to modern AAIW is indicated by the sparse benthic population of epifaunal rotaloid species in the northern Mascarene Basin during middle Miocene Zone N9 and from early through late Pliocene time. Deep-water characteristics are more difficult to interpret because of the extensive redeposition at the deeper sites. Redeposited intermediate, rather than shallow, water fossils and erosion from north to south in the Mascarene Basin are incompatible with the sluggish circulation from south to north through the western Indian Ocean basins today. Such erosion could result from the vigorous sinking of an intermediate-depth water mass of northern origin. Before late Oligocene Zone P22, benthic faunas indicate a twofold subdivision of the troposphere, with the boundary between upper and lower well-oxygenated water masses located from 2500-3000 mbsl. No characteristic bottom-water fauna developed before the end of late Oligocene Zone P22. Deep and abyssal benthic indexes suggest the development of water masses similar to those of the present day in the latest Miocene. Faunas containing deep-water benthic indexes, including the uvigerinids, suggestive of a water mass similar to modern Indian Deep Water (IDW), appeared during the late Miocene in the northern Mascarene and Central Indian basins. In the early Pliocene, this deep-water fauna was found only in the Central Indian Basin, whereas a fauna typical of modern Antarctic Bottom Water (AABW) spread through deep waters at 2800 mbsl in the Mascarene Basin. By late Pliocene Zone N21, however, deep-water faunas similar to their modern analogs were developed in both the eastern and western basins. Abyssal faunas, studied only in the Mascarene Basin, show more or less similarity to those under modern AABW. Bottom-water faunas containing Nuttallides umbonifera or Epistominella exiguua were first differentiated at the end of Zone P22, then appeared episodically during the early Miocene. These AABW-type faunas reappeared and migrated updepth into deep waters during the glacial episodes at the end of the Miocene and at the beginning of the Pliocene. By late Pliocene Zone N21, however, a bottom-water fauna similar to that under eastern Indian Bottom Water (IBW) developed in the Mascarene Basin. Modern bottom-water characteristics of the Mascarene Basin must have developed after ZoneN21.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term surveys of the coast bordering the western Baltic Sea in Schleswig-Holstein yielded extensive information over the retreat and condition of active cliffs. 181 cliffs with a total length of 148 km are present along the 55 km coastline including Fehmarn lsland and the Schlei Fjord. Depending on their temporal and spatial evolution, and geomorphological stability, the cliffs are subdivided in three separate classes - actively retreating escarpments, cliff Segments with potential for retreat and stable cliffs. 85 sections of the coastline with a total length of 59 km are classified as ,,active cliffs" that are undergoing retreat through natural erosion, collapse, and disintegration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three radiocarbon-dated sediment cores from the northeastern Vietnamese Mekong River Delta have been analysed with a multiproxy approach (grain size, pollen and spores, macro-charcoal, carbon content) to unravel the palaeoenvironmental history of the region since the mid Holocene. During the mid-Holocene sea-level highstand a diverse, zoned and widespread mangrove belt (dominated by Rhizophora) covered the extended tidal flats. The subsequent regression and coeval delta progradation led to the rapid development of a back-mangrove community dominated by Ceriops and Bruguiera but also represented locally by e.g. Kandelia, Excoecaria and Phoenix. Along rivers this community seems to have endured even when the adjoining floodplain had already shifted to freshwater vegetation. Generally this freshwater vegetation has a strong swamp signature but locally Arecaceae, Fabaceae, Moraceae/Urticaceae and Myrsinaceae are important and mirror the geomorphological diversity of the delta plain. The macro-charcoal record implies that natural burning of vegetation occurred throughout the records, however, the occurrence of the highest amounts of macro-charcoal particles is linked with modern human activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of detailed geomagnetic and geomorphological studies carried out by R/V Akvanavt together with data obtained by a side-scanning sonar and high-frequency profiles from a towed Zvuk-4 vehicle plus results of visual observations of deep-sea manned Pisces submersible have shown that the spreading axis is divided into segments, whose strike (330°) differs from the overall strike (310°) of the axial magnetic anomaly. In the study area segments are about 1 km long and transform displacements are 0.5 km. Calculations on a model have shown that spreading is asymmetric: during the Brunhes epoch accretion rate of the African Plate was 6 mm/yr and that of the Arabian Plate 7 mm/yr. Earlier it had been 9 and 11 mm/yr, respectively.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A planktonic foraminiferal zonal scheme is presented for subdivision of the Upper Cretaceous pelagic carbonate sequence from southern mid-high latitudes. Definition of the zones is based on first and last occurrences of planktonic foraminifera from Ocean Drilling Program Holes 762C and 763B (Leg 122; Exmouth Plateau, south Indian Ocean). During the Late Cretaceous the studied holes were located close to 50°S and for the first time a complete sedimentary record for the mid-high latitudes was obtained. A detailed biostratigraphic analysis has allowed recognition of two new zones (Falsotruncana maslakovae Zone and Marginotruncana marianosi Zone) for the interval extending from the last occurrence of Helvetoglobotruncana helvetica to the first occurrence of Dicarinella asymetrica (upper Turonian - lower Santonian). From this study it is apparent that some low latitude (Globotruncana ventricosa, Hedbergella flandrini, Marginotruncana marianosi) and high latitude (Globigerinelloides impensus and Hedbergella sliteri) marker taxa display a vertical distribution at mid-high latitudes which is different from that known from low latitudes; moreover, one species (Heterohelix papula), overlooked at low latitudes, exhibits a restricted range that seems to be useful for chrono-biostratigraphic correlations: its appearance is suggested to coincide with the Coniacian/Santonian boundary. The proposed biozonation, which is integrated with calcareous nannofossil and magnetostratigraphic data available for the sections studied, is compared with both the low-latitude standard zonation and the planktonic foraminiferal zonal scheme for the circum-Antarctic region, in order to define a bio-chronostratigraphic scale that is useful for mid-high latitudes of the southern oceans.

Relevância:

10.00% 10.00%

Publicador: