241 resultados para Fresh-water-flow


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along inline image (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma-theta = 27.68 kg/m**3 in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present evidence that the characteristic chemical signature (based on coupled benthic foraminiferal Cd/Ca and d13C) of Antarctic Intermediate waters (AAIW) penetrated throughout the intermediate depths of the Atlantic basin to the high-latitude North Atlantic during the abrupt cooling events of the last deglaciation: Heinrich 1 and the Younger Dryas. AAIW may play the dynamic counterpart to the "bipolar seesaw" when near-freezing salty bottom waters from the Antarctic (AABW) sluggishly ventilate the deep ocean. Our data reinforce the concept that interglacial circulation is stabilized by salinity feedbacks between salty northern sourced deep waters (NADW) and fresh southern sourced waters (AABW and AAIW). Further, the glacial ocean may be susceptible to the more finely balanced relative densities of NADW and AAIW, due to either freshwater input or a reversal of the salinity gradient, such that the ocean is poised for NADW collapse via a negative salinity feedback. The unstable climate of the glacial period and its termination may arise from the closer competition for ubiquity at intermediate depths between northern and southern sourced intermediate waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While the R.V. "Meteor" was in the eastern Persian Gulf, during the time between March 31 and April 14, 1965, bacteriological investigations of the water and sediment were performed. The content of saprophytic bacteria in the water decreases from the coasts outward to the middle of the gulf. This shows a good correlation with the turbidity values. In a sediment core from the southern part of the gulf, the bacterial counts in all the horizonts were much higher than those from the northern part of the Persian Gulf. This agrees with the findings of the geologists, according to which the proportion of carbon compounds in the sediments decreases from south to north. Luminous bacteria were found in many samples of water. Their proportion of the saprophytic flora becomes less from south to north. Most of the water samples also contained pigmented bacteria. On freshwater medium, relatively few bacteria were able to develop. The proportion of these non-halophilic forms amounted up to 7 % (average about 1 %) of the total saprophytic count, in 22 samples examined. In this group the pigmented forms played a very large role. A comparison of the distribution of saprophytic bacteria in the eastern Persian Gulf with that in other inland seas such as the North Sea and the Baltic Sea shows, that the saprophytic counts in the subtropical Persian Gulf (arid region) lie clearly below those in corresponding sea areas of the temperate zones (humid region). This is to be attributed above all to the greater flow of organic nutrients into the latter.