197 resultados para Fluvial
Resumo:
The terrigenous fraction of sediments from a deep-sea sediment core recovered from the northwestern Western Australian continental slope offshore North West Cape, SE Indian Ocean, reveals a history of Western Australian climate throughout the last 550 ka. End-member modelling of a data set of grain-size distributions (n = 438) of the terrigenous sediment fraction allows to interpret the record in terms of aeolian and fluvial sediment deposition, both related to palaeo-environmental conditions in the North West Cape area. The data set can be best described by two aeolian end members and one fluvial one. Changes in the ratio of the two aeolian end members over the fluvial one are interpreted as aridity variations in northwestern Western Australia. These grain-size data are compared with bulk geochemical data obtained by XRF scans of the core. Log-ratios of the elements Zr/Fe and Ti/Ca, which indicate a terrigenous origin, corroborate the grain-size data. We postulate that the mid- to late Quaternary near North West Cape climate was relatively arid during the glacial and relatively humid during the interglacial stages, owing to meridional shifts in the atmospheric circulation system. Opposite to published palaeo-environmental records from the same latitude (20°S) offshore Chile and offshore Namibia, the Australian aridity record does not show the typical southern hemisphere climate variability of humid glacials and dry interglacials, which we interpret to be the result of the relatively large land mass of the Australian continent, which emphasises a strong monsoonal climatic system.
Resumo:
High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.
Resumo:
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0'N; 10°16.1'W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.
Resumo:
As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.
Resumo:
One hundred thirty-one marker horizons relating to the distinct and traceable layers were described for the Owen Ridge and Oman Margin sites. The correlations incorporated the calculations of true depth, corrected for coring disturbance and gas expansion. Intersite correlation of marker horizons has been improved based on color density data, measured with video densitometer, and oxygen isotope stratigraphic data. Distinct hiatuses were detected by the intersite correlation of the marker horizons in the Owen Ridge. The hiatuses are related to submarine slides induced by increasing gravitational instability for the accumulation of the pelagic sediments on the top of the Owen Ridge. The large amount of sediment supply with variable lithofacies during the glacial stages is represented by layer-bylayer correlation in the Oman Margin. The color density patterns with glacial-interglacial cycles are controlled by the balance of organic carbon content, increasing in the interglacial stages with strong upwelling induced by the southwest monsoon, and flux of terrigenous matter, increasing in the glacial stages. The present distinct climatic cycle relating to the southwest monsoon has been developed since Stage 8, 250 ka. The large amount of sediment supply in the glacial stages can be assumed as fluvial in origin from the humid Arabian Peninsula, relating to the weakened Tropical Easterly Jet, which is induced by the counter-current of the southwest monsoon and maintains the present arid climate in the north Africa and Arabian Peninsula.
Resumo:
In the neighbourhood of Oobloyah Bay various phenomena ean be eneountered whieh point to a ularge-seale uplift of shorelines, i.e. to an emergence of 200 m. Delta terraces, deltaic fan terraces and glacio-marine sands are regarded by the author as being the most reliable evidence of this. The marine limit documented by glacio-marine sand is to be found at ~170 m a.s.l. Hints of ancient shorelines located at a higher level exist only in the shape of badly preserved raised beaches. They were classified as less reliable records of past sea-levels, due to the lack of marine fossils and/or drift wood, and furthermore because those forms had been strongly influenced by periglacial processes. Deltaic deposits are of more importance in this context. The glacio-marine deltaic sands of several terrace levels contain terrestrial plant remnants which delivered C14dates. Using these dates und the relative elevations of terraces the emergenee of the area investigated could be recorded. This occured in a series of phases (and steps) which were summarized into two periods: an early period of emergenee which took place from at least 25 300 years B.P. to later than 17 340 years B.P. and a later one from at least 12 870 years B.P. up to the present day. The emergence seems to represent a discontinuous but regular sequence of relative sea level movements without intermittent submergence. Since the deltaic fans of the early emergence period were accumulated by sediments through glacio-fluvial channels of an adjacent glacier body the appropriate location of this glacial stage for one of the glaciers delivering meltwater (Nukapingwa Glacier) could be reconstructed. This stage of the glacier appears to belong to a retreating phase of the Mid-Wisconsin (?). The later period of emergence resulted in six rather glacio-marine delta terrace generations at the mouths of the main rivers with glaciofluvial regimen debouching into the Oobloyah Bay. A connection of this emergence with the glacial history of the field area is discussed. If one may rely on the age determinations of land derived plant fossils and their application for the climatic history of the area investigated, it must be concluded that the Heidelberg Valley, to a large extent, was alreaely deglaciated 25 000 years ago. The existence of a "Cockburn"-Phase in the sense of a major readvanee in Late Wisconsin times appears to be doubtful, or has been developed rather weakly.
Resumo:
We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.
Resumo:
We present a suite of new high-resolution records (0-135 ka) representing pulses of aeolian, fluvial, and biogenic sedimentation along the Senegalese continental margin. A multiproxy approach based on rock magnetic, element, and color data was applied on three cores enclosing the present-day northern limit of the ITCZ. A strong episodic aeolian contribution driven by stronger winds and dry conditions and characterized by high hematite and goethite input was revealed north of 13°N. These millennial-scale dust fluxes are synchronous with North Atlantic Heinrich stadials. Fluvial clay input driven by the West African monsoon predominates at 12°N and varies at Dansgaard-Oeschger time scales while marine productivity is strongly enhanced during the African humid periods and marine isotope stage 5. From latitudinal signal variations, we deduce that the last glacial ITCZ summer position was located between core positions at 12°26' and 13°40'N. Furthermore, this work also shows that submillennial periods of aridity over northwest Africa occurred more frequently and farther south than previously thought.
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
NW African climate shows orbital and millenial-scale variations, which are tightly connected to changes in marine productivity. We present an organic-walled dinoflagellate cyst (dinocyst) record from a sediment core off Cape Yubi at about 27°N in the Canary Basin covering the time period from 47 to 3ka before present (BP). The dinocyst record reflects differences in upwelling intensity and seasonality as well as the influence of fluvial input. Sea-level changes play an important role for the upwelling pattern and productivity signals at the core site. Within the studied time interval, four main phases were distinguished. (1) From 45 to 24ka BP, when sea-level was mostly about 75m lower than today, high relative abundances of cysts of heterotrophic taxa point to enhanced upwelling activity, especially during Heinrich Events, while relatively low dinocyst accumulation rates indicate that filament activity at the core location was strongly reduced. (2) At sea-level lowstand during the LGM to H1, dinocyst accumulation rates suggest that local filament formation was even more inhibited. (3) From the early Holocene to about 8ka BP, extraordinary high accumulation rates of most dinocyst species, especially of Lingulodinium machaerophorum, suggest that nutrient supply via fluvial input increased and rising sea-level promoted filament formation. At the same time, the upwelling season prolongated. (4) A relative increase in cysts of photoautotrophic taxa from about 8ka BP on indicates more stratified conditions while fluvial input decreased. Our study shows that productivity records can be very sensitive to regional features. From the dinocyst data we infer that marine surface productivity off Cape Yubi during glacial times was within the scale of modern times but extremely enhanced during deglaciation.
Resumo:
High-resolution climatic records of the late Holocene along the north-west African continental margin are scarce. Here we combine sediment grain size, elemental distribution and mineral assemblage data to trace dust and riverine sources at a shallow-marine sediment depocentre in the vicinity of the Senegal River mouth. The aim is to understand how these terrigenous components reflect climate variability during the late Holocene. Major element contents were measured and mineral identification was performed on three sub-fractions of our sediment core: (i) fluvial material <2 µm, (ii) aeolian material of 18-63 µm and (iii) a sub-fraction of dual-origin material of 2-18 µm. Results show that more than 80% of the total Al and Fe terrigenous bulk content is present in the fluviogenic fraction. In contrast, Ti, K and Si cannot be considered as proxies for one specific source off Senegal. The Al/Ca ratio, recording the continental river runoff, reveals two dry periods from 3010 to 2750 cal a BP and from 1900 to 1000 cal a BP, and two main humid periods from 2750 to 1900 cal a BP and from 1000 to 700 cal a BP. The match between (i) intervals of low river runoff inferred by low Al/Ca values, (ii) reduced river discharge inferred by integrated palynological data from offshore Senegal and (iii) periods of enhanced dune reactivation in Mali confirms this interpretation.