733 resultados para Equatorial Atlantic ocean
Resumo:
Grain-size records of the terrigenous and calcareous silt fraction, preservation of planktic foraminifera, and benthic foraminiferal stable-isotope data (delta13C, delta18O values of C. wuellerstorfi) at ODP Site 927 on the Ceará Rise (5°27.7'N, 44°28.8'W), are used to reconstruct variations in the history of bottom current strength, ventilation, and carbonate corrosiveness of deep waters during the time interval from 0.8 to 0.3 Ma. Glacial periods are characterized by generally smaller mean sizes of the terrigenous sortable silt fraction (mean(SS)), lower delta13C values, and poorer preservation of planktic foraminifera compared to interglacials. This indicates lower bottom current speeds, larger nutrient contents and more corrosive deep water. By contrast, larger mean(SS) sizes, higher delta13C values, and well preserved planktic foraminifera indicate strong circulation and a well ventilated deep-water mass during interglacials. The observed changes are most likely related to the weakening and strengthening of circulation of Lower North Atlantic Deep Water (LNADW). Cross-spectral analysis between the mean(SS) and benthic delta18O records reveals that minima in mean(SS) occur about 7.6 k.y. after the maximum in ice volume. This indicates a considerable lag time between ice-shield induced changes in LNADW production and subsequent changes in the velocity of LNADW flow in the western equatorial Atlantic. Striking changes in bottom current speed occur regularly during glacial to interglacial transitions. Extremely fine mean(SS) minima point to an almost complete shutdown of bottom current vigor in response to a cessation of LNADW production caused by an enhanced melt water release during the initial phases of deglaciation. However, each of the fine minima extremes is followed by a rapid shift to very high mean(SS) values that indicate strong bottom currents, and hence, vigorous LNADW flow during the early interglacials. After the onset of glacial Stage 12, generally poorer carbonate preservation and higher variability is registered. This coincides with a global decrease in carbonate preservation during the mid-Brunhes (mid-Brunhes dissolution event). Detailed grain-size analysis of the calcareous fine fraction (<63 µm) revealed a considerable reduction of particles in the fraction from 7 to 63 µm during periods of enhanced dissolution. This indicates a preferential dissolution of larger planktic foraminiferal fragments which leads to an enrichment of coccoliths in the calcareous fine fraction.
Resumo:
Analyses of the palynofacies and sporomorph thermal alteration indices (TAI) of sediments from Ocean Drilling Program (ODP) Sites 959 to 962 in the Cote d'Ivoire-Ghana Transform Margin, West Africa were undertaken to (1) determine the source and depositional conditions of the organic matter in the sediments, (2) refine a paleobathymetric curve derived from other data for Site 959, which drilled the most continuous sedimentary sequence from Pleistocene to Albian and (3) interpret the paleothermal history of the area. Twelve types of dispersed organic matter were identified: amorphous organic matter (AOM), marine palynomorphs, algae, resins, black debris, yellow-brown fragments, black-brown fragments, cuticles, plant tissue, wood, sporomorphs and fungi, The relative abundances of these organic matter components at each site were analyzed using cluster analysis, resulting in the identification of seven palynofacies assemblages at Site 959, five each at sites 960 and 961, and four at Site 962. Amorphous organic matter (which is chiefly marine derived), black debris and wood have played the most significant role in defining palynofacies assemblages. The palynofacies assemblages show some correlation with lithologic units, sediment sources and depositional environments. Previous palynofacies studies in passive margins have demonstrated that changes in the ratio of AOM to terrestrial organic matter are related primarily to proximal-distal positions of depositional environments relative to the shoreline. However, this assumption does not always hold true for a transform margin where tectonic factors play an important role in the organic matter distribution, at least in the early stages of evolution. Lithofacies, CCD paleodepths for the North Atlantic, trace fossil association, benthic foraminifera and palynofacies data were the criteria used for reconstructing a paleobathymetric curve for Site 959. A cyclicity in the organic matter distribution of the Upper Miocene to Lower Pliocene pelagic sediments could be related to fluctuations in productivity of biosiliceous and calcareous organisms, and sedimentation rates. A drastic increase in the amount of AOM and a decrease in black debris and wood in the carbonate and clastic rocks (Lithologic Unit IV) overlying the tectonized Albian sediments (Lithologic Unit V) at Sites 959 and 960 coincide with the presence of an unconformity. Qualitative color analysis of palynomorphs was undertaken for all sites, although the main focus was on Site 959 where detailed organic geochemical data were available. At Site 959, TAI values indicate an immature stage of organic maturation (<2) down to the black claystones of Lithologic Unit III at about 918.47 mbsf. Below this, samples show an increase with depth to a moderately mature stage (>2 except for the claystone samples between 1012.52 and 1036.5 mbsf, and one limestone sample at 1043.4 mbsf), reaching peak levels of 2.58 to 3.0 in the tectonized Albian sediments below the unconformity. These TAI values show a positive correlation with the Tma x values derived from Rock-Eval pyrolysis data. The highest values recorded in the basal tectonized units at all the sites (Sites 960-962 have mean values between 2.25 and 3.13) may be related to high heat flow during the intracontinental to syntransform basin stage in the region.
Resumo:
During the Equamarge II cruise (February 4 to March 21, 1988), on board the R. V. "Jean Charcot", 12.500 kms of continuous geophysical profiling have been recorded along three sectors of the Equatorial Atlantic. Two segments ofthe West African transform margin have been intensively surveyed off Guinea and off Ivory Coast and Ghana. The active Romanche fracture zone has been surveyed in details on a distance of about 100 kms. These data (multibeam bathymetry, continuous seismic profiling, magnetism and gravity) have been supplemented by 16 geological stations (dredging and coring). This report gives a synthetic review of the onboard analysis and allows to better understand the geological structures of the three surveyed areas.