53 resultados para Energy flow levels
Resumo:
Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.
Resumo:
Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.
Resumo:
Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.
Resumo:
Fifty radiolarian events of early Pleistocene and Neogene age were identified in an E-W transect of equatorial DSDP sites, extending from the Gulf of Panama to the western Pacific and eastern Indian Oceans. Our objective was to document the degree of synchroneity or time-transgressiveness of stratigraphically-useful datum levels from this geologic time interval. We restricted our study to low latitudes within which morphological variations of individual taxa are minimal, the total assemblage diversity remains high, and stratigraphic continuity is well-documented by an independent set of criteria. Each of the five sites chosen (503, 573, 289/586, 214) was calibrated to an "absolute" time scale, using a multiple of planktonic foraminiferal, nannofossil, and diatom datum levels which have been independently correlated to the paleomagnetic polarity time scale in piston core material. With these correlations we have assigned "absolute" ages to each radiolarian event, with a precision of 0.1-0.2 m.y. and an accuracy of 0.2-0.4 m.y. On this basis we have classified each of the events as either: (a) synchronous (range of ages <0.4 m.y.); (b) time-transgressive (i.e., range of ages >1.0 m.y.); and (c) not resolvable (range of ages 0.4-1.0 m.y.). Our results show that, among the synchronous datum levels, a large majority (15 out of 19) are last occurrences. Among those events which are clearly time-transgressive, most are first appearances (10 out of 13). In many instances taxa appear to evolve first in the Indian Ocean, and subsequently in the western and eastern Pacific Ocean. This pattern is particularly unexpected in view of the strong east-to-west zonal flow in equatorial latitudes. Three of the time-transgressive events have been used to define zonal boundaries: the first appearances of Spongaster pentas, Diartus hughesi, and D. petterssoni. Our results suggest that biostratigraphic non-synchroneity may be substantial (i.e., greater than 1 m.y.) within a given latitudinal zone; one would expect this effect to be even more pronounced across oceanographic and climatic gradients. We anticipate that the extent of diachroneity may be comparable for diatom, foraminiferal, and nannofossil datum levels as well. If this proves true, global "time scales" may need to be re-formulated on the basis of a smaller number of demonstrably synchronous events.