53 resultados para End of the world (Islam)--Early works to 1800
Resumo:
Seasonal collections were made from 3 stations in a brackish lagoon near Kiel/Germany from December 1964 to June 1967. In addition 120 samples were taken in June 1966 to investigate the general pattern of distribution. Two species of the offshore fauna were found to dominate the lagoon (high population densities): Cribrononion articulatum and Miliammina fusca. The 'Vegetation zone' of the lagoon contains an assemblage of seven euryhaline arenaceous species. All of them were previously recorded from different regions of the world. - C. articulatum seems to prefer shallow water with a high daily range of water temperature (up to 30° Cels.). Population density and distribution show considerable differences between the different years. Size distribution curves of C. articulatum indicate main reproduction activity in spring and subsequent growth in uniform populations. Growth is terminated after six months but most of the specimens will either die in winter or reproduce the next spring; only a smaller amount is reproducing in summer or autumn. - Annual differences of the observed degree make it difficult to calculate foraminiferal productivity in a lagoonal environment and require seasonal observation over a period of at least 3 or 4 years.
Resumo:
We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.
Resumo:
The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface. No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3-50 cm/y) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1-2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.
Resumo:
Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.