357 resultados para East Central African Expedition (1878-1880)
Resumo:
Integrated Ocean Drilling Program (IODP) Expedition 302 (Arctic Coring Expedition, ACEX) recovered a unique sediment record from the central Arctic Ocean, revealing that this region underwent major environmental fluctuations since the Late Cretaceous. Major and trace element composition of 1,300 samples were determined using X-ray fluorescence (XRF). The results show significant compositional variability of the sediments with depth that can be attributed to changes in (a) provenance and pathways of detrital material, (b) paleoenvironmental conditions and depositional processes, and (c) diagenetic overprint of the primary record. In addition to existing lithological units, we introduce new geochemical units for a more process-related approach interpreting the ACEX record. In detail, via the geochemical signature of Siberian flood basalts we are able to reconstruct the discontinuous rifting and deepening of the central Lomonosov Ridge during the Paleogene, accompanied by changing current regimes and the onset of sea ice. Eocene biosiliceous sedimentation took place in a relatively shallow setting under predominantly anoxic bottom water conditions, causing a positive anoxia-productivity feedback, although water column stratification was repeatedly interrupted by ventilation events. Anoxic to sulfidic conditions were even more extreme after biosilica production ceased, and significant amounts of pyrite were deposited on the Lomonosov Ridge. Especially in organic matter-rich Paleogene deposits, diagenetic processes obscured the paleoenvironmental signals. Fundamental environmental changes occurred in the Middle Eocene, but geochemical and micropaleontological proxies point not to the identical sediment depth. After approximately 26 Ma of non-deposition or erosion, the Middle Miocene record shows the transition to dominantly oxic bottom water conditions, although suboxic diagenesis seemingly affected these deposits.
Resumo:
Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.
Resumo:
This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.
Resumo:
In order to reconstruct Late Quatemary variations of surface oceanography in the eastequatorial South Atlantic, time series of sea-surface temperatures (SST) and paleoproductivity were established from cores recovered in the Guinea and Angola Basins, and at the Walvis Ridge. These records, based on sedimentary alkenone and organic carbon concentrations, reveal that during the last 350,000 years surface circulation and productivity changes in the east-equatorial South Atlantic were highiy sensitive to climate forcing at 23- and 100-kyr periodicities. Covarying SST and paleoproductivity changes at the equator and at the Walvis Ridge appear to be driven by variations in zonal trade-wind intensity, which forces intensification or reduction of coastal and equatorial upwelling, as well as enhanced Benguela cold water advection from the South. Phase relationships of precessional variations in the paleoproductivity and SST records from the distinct sites were evaluated with respect to boreal summer insolation over Africa, movements of southem ocean thermal fronts, and changes in global ice volume. The 23-kyr phasing implies a sensitivity of eastem South Atlantic surface water advection and upwelling to West African monsoon intensity and to changes in the position ofthe subtropical high pressure cell over the South Atlantic, both phenomena which modulate zonal strength of southeasterly trades. SST and productivity changes north of 20°S lack significant variance at the 41-kyr periodicity; and at the Walvis Ridge and the equator lead changes in ice volume. This may indicate that obliquity-driven clirnate change, characteristic for northem high latitudes, e.g fluctuations in continental ice masses, did not substantially influence subtropical and tropical surface circulation in the South Atlantic. At the 23-kyr cycle SST and productivity changes in the eastern Angola Basin lag those in the equatorial Atlantic and at the Walvis Ridge by about 3500 years. This lag is explained by variations in cross-equatorial surface water transport and west-east countercurrent retum flow modifying precessional variations of SST and productivity in the eastem Angola Basin relative to those in the mid South Atlantic area under the central field of zonal trade winds. Sea level-related shifts of upwelling cells in phase with global clirnate change may be also recorded in SST and productivity variability along the continental margin off Southwest Africa. They may account for the delay of the paleoceanogreaphic signal from continental margin sites with respect to that from the pelagic sites at the equator and the Walvis Ridge.
Resumo:
Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides over a distance of >350 km along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval of such old sediments with gravity cores. Multi-proxy biomarker analyses of these gravity cores reveal for the first time that the late Miocene central Arctic Ocean was relatively warm (4-7°C) and ice-free during summer, whereas sea ice occurred during spring and autumn/winter. A comparison of our proxy data with Miocene climate simulations seems to favour relatively high late Miocene atmospheric CO2 concentrations. These new findings from the Arctic region provide new benchmarks for groundtruthing global climate reconstructions and modeling.
Resumo:
The density, species composition, and possible change in the status of pack ice seals within the Weddell Sea were investigated during the 1997/1998 summer cruise of the RV "Polarstern" (ANT-XV/3, PS48). Comparisons were made with previous surveys in the Weddell Sea where it was assumed that all seals were counted in a narrow strip on either side oft he ship or aircraft. A total of 15 aerial censuses were flown during the period 23 January - 7 March 1998 in the area bounded by 07°08' and 45°33' West longitude. The censused area in the eastern Weddell Sea was largely devoid of pack ice while a well circumscribed pack ice field remained in the western Weddell Sea. A total of 3,636 (95.4 %) crabeater seals, 21 (0.5 %) Ross seals, 45 (1.2 %) leopard seals and 111 (2.9 %) Weddell seals were observed on the pack ice during a total of 1,356.57 linear nautical miles (244.2 nm) of transect line censused. At a mean density of 21.16 1/nm**2 over an area of 244.2 nm, it is the highest densities on record for crabeater seals, density of up to 411.7 1/nm**2 being found in small areas. The overall high densities of seals (30.18 1/nm**2) recorded for the eastern Weddell Sea (27.46 1/nm**2, 0.27 1/nm**2, and 0.66 1/nm**2 for crabeater, leopard and Weddell seals respectively) is a consequence of the drastically reduced ice cover and the inverse relationship that exists between cover and seal densities. Ross seal densities (0.08 1/nm**2) were the lowest on record fort the area. It is suggested that seals largely remain within the confines of the pack ice despite seasonal and annual changes in its distribution. Indications are that in 1998 the El Niño has manifested itself in the Weddell Sea, markedly influencing the density and distribution of pack ice seals.
Resumo:
During Leg 92 of the Deep Sea Drilling Project, sediments containing calcareous nannofossils of latest Oligocene to Holocene age were recovered from 14 holes at six sites (597 to 602) along the East Pacific Rise. The combined sections yield a virtually complete record for the region, with a compressed upper Miocene to Pleistocene interval. The nannofossil content of 14 U.S.N.S. Eltanin piston cores from the study area were also examined in order to supplement data generated during Leg 92. Two taxonomically new combinations are presented: Sphenolithus umbellus and Pontosphaera segmenta. Assemblages of calcareous nannofossils juxtaposed in reversed stratigraphic order within the upper Miocene provide strong evidence for downslope transport of sediments along the East Pacific Rise during the Messinian. Narrow bands of dark metalliferous sediment of coccolith Zone CN8b alternate with normal light-colored, in situ, pelagic sequences of Zone CN9b. This may indicate more vigorous bottom current activity between 5.40 and 6.70 Ma.
Resumo:
The foraging distributions of 20 breeding emperor penguins were investigated at Pointe Géologie, Terre Adélie, Antarctica by using satellite telemetry in 2005 and 2006 during early and late winter, as well as during late spring and summer, corresponding to incubation, early chick-brooding, late chick-rearing and the adult pre-moult period, respectively. Dive depth records of three post-egg-laying females, two post-incubating males and four late chick-rearing adults were examined, as well as the horizontal space use by these birds. Foraging ranges of chick-provisioning penguins extended over the Antarctic shelf and were constricted by winter pack-ice. During spring ice break-up, the foraging ranges rarely exceeded the shelf slope, although seawater access was apparently almost unlimited. Winter females appeared constrained in their access to open water but used fissures in the sea ice and expanded their prey search effort by expanding the horizontal search component underwater. Birds in spring however, showed higher area-restricted-search than did birds in winter. Despite different seasonal foraging strategies, chick-rearing penguins exploited similar areas as indicated by both a high 'Area-Restricted-Search Index' and high 'Catch Per Unit Effort'. During pre-moult trips, emperor penguins ranged much farther offshore than breeding birds, which argues for particularly profitable oceanic feeding areas which can be exploited when the time constraints imposed by having to return to a central place to provision the chick no longer apply.
Resumo:
During the 'Meteor' expedition SUBTROPEX '82, sediment samples were taken at 14 stations in different water depths at 35, 29, 25, 21 and 17 °N, and measurements of bacterial biomasses and activities were carried out in these different upwelling-intensity areas. Highest densities and biomasses by AODC (2.2 x 10**8 cells, corresponding to 14.8 µg C/g sediment dry wt) were recorded at 21 °N, year-round upwelling, at 1200 and 800 m, but at 500 m biomass was still 4.3 µg C/g dry wt. Relatively high densities and biomasses (6.5 and 6.8 µg C/g dry wt) were found at 17 °N, upwelling mostly in winter and spring, at 1200 and 800 m. AODC were 2 to 3 orders of magnitude higher than viable counts, incubation at 2 or 20 °C. For deep-water sediments, counts at 2 °C were higher than at 20 °C. Biomass and ATP concentrations were highest in the 0 to 2 cm sediment layers; they decreased with sediment depth. Bacterial biomasses were correlated with organic carbon and ATP concentrations. The fractions of Bacterial ATP were calculated to be 2 to 24% of ATP-biomass. On the basis of organic carbon, however, fractions of Bacterial Organic Carbon were only 0.02 to 0.06%. For microbial communities, the conversion factor 0.004 for BOC to BATP seems 2 orders of magnitude too high. Maximum AEC ratios of 0.53 to 0.70 were found at 21 and 17 °N; the other stations had AEC ratios of 0.21 to 0.47. Numbers of bacteria with respiratory ETS were between 0.5 and 10.5 % of AODC. An exception was the shelf station at 35 °N with 34.2% of AODC.
Resumo:
The speciation of iron was investigated in three shelf seas and three deep basins of the Arctic Ocean in 2007. The dissolved fraction (<0.2 µm) and a fraction < 1000 kDa were considered here. In addition, unfiltered samples were analyzed. Between 74 and 83% of dissolved iron was present in the fraction < 1000 kDa at all stations and depth, except at the chlorophyll maximum (42-64%). Distinct trends in iron concentrations and ligand characteristics were observed from the shelf seas toward the central deep basins, with a decrease of total dissolvable iron ([TDFe] > 3 nM on the shelves and [TDFe] < 2 nM in the Makarov Basin). A relative enrichment of particulate Fe toward the bottom was revealed at all stations, indicating Fe export toward the deep ocean. In deep waters, dissolved ligands became less saturated with Fe (increase of [Excess L]/[Fe]) from the Nansen Basin via the Amundsen Basin toward the Makarov Basin. This trend was explained by the reactivity of the ligands, higher (log alpha > 13.5) in the Nansen and Amundsen basins than in the Makarov Basin (log alpha <13) where the sources of Fe and ligands were limited. The ligands became nearly saturated with depth in the Amundsen and Nansen Basins, favoring Fe removal in the deep ocean, whereas in the deep Makarov Basin, they became unsaturated with depth. Still here scavenging occurred. Although scavenging of Fe was attenuated by the presence of unsaturated organic ligands, their low reactivity in combination with a lack of sources of Fe in the Makarov Basin might be the reason of a net export of Fe to the sediment.