230 resultados para ENRICHED URANIUM
Resumo:
Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in a seismically-defined ~128 Ma "transitional" crust just west of the presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739 m hole was terminated 90-160 m above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the "immobile" trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible "added" component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.
Resumo:
In the southeast of the Bolshoi Lyakhovsky Island there are outcrops of tectonic outliers composed of low-K medium-Ti tholeiitic basic rocks represented by low altered pillow basalts, as well as by their metamorphosed analogs: amphibolites and blueschists. The rocks are depleted in light rare-earth elements and were melted out of a depleted mantle source enriched in Th, Nb, and Zr also contributed to the rock formation. The magma sources were not affected by subduction-related fluids or melts. The rocks were part of the Jurassic South Anyui ocean basin crust. The blueschists are the crust of the same basin submerged beneath the more southern Anyui-Svyatoi Nos arc to depth of 30-40 km. Pressure and temperature of metamorphism suggest a setting of "warm" subduction. Mineral assemblages of the blueschists record time of a collision of the Anyui-Svyatoi Nos island arc and the New Siberian continental block expressed as a counter-clockwise PT trend. The pressure jump during the collision corresponds to heaping of tectonic covers above the zone of convergence 12 km in total thickness. Ocean rocks were thrust upon the margin of the New Siberian continental block in late Late Jurassic - early Early Cretaceous and mark the NW continuation of the South Anyui suture, one of the main tectonic sutures of the Northeastern Asia.
Resumo:
Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.
Resumo:
New trace element analyses are presented for Leg 180 dolerites, basalts from the Papuan Ultramafic Belt (PUB), and basement rocks of Woodlark Island. The Leg 180 dolerites are similar to those from Woodlark Island in being derived from an enriched source but differ from the PUB, which came from a source similar to normal mid-ocean ridge basalts. A reliable 40Ar/39Ar age of 54.0 ± 1.0 Ma has been obtained by step heating of a whole-rock sample from Site 1109, and a similar but less reliable age was obtained for a sample from Site 1118. Plagioclase from Site 1109 did not give a meaningful age. This age is broadly similar to ages from the Dabi volcanics of the nearby Cape Vogel and for the PUB.
Resumo:
Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.
Resumo:
The proposed origins for the Enriched Mantle I component are many and various and some require an arbitrary addition of an exotic component, be it pure sediment or an enriched melt from the subcontinental lithosphere. With Pitcairn, Walvis Ridge is the 'type-locality' for the Enriched Mantle I (EMI) component. We analyzed basalts from DSDP Site 525A, Site 527 and Site 528 on the Walvis Ridge with the aim to constrain the history of its source. The isotopic compositions we measured for the three sites overlap with the values obtained by Richardson et al. (1982a) and extend towards less radiogenic Sr and more radiogenic Pb and Nd isotopic compositions. We used our new trace element and radiogenic isotope (Hf, Nd, Pb and Sr) characterization in combination with the literature data to produce the simplest possible model that satisfies the trace element and isotopic constraints. Although the elevated 207Pb/204Pb with respect to 206Pb/204Pb predicts an ancient origin for EMI, none of the proposed origins had modeled it as such. The data is consistent with the EMI composition being formed by the addition of a melt to a mantle with bulk Earth-like composition followed by melt extraction of a low degree melt. The timing of these two events is such that the metasomatism has to have taken place prior to 4 Ga and the subsequent melt removal before 3.5 Ga. This confirms the expectation of an ancient character for the EMI component. The Walvis Ridge data shows two distinct two component mixing trends: one formed by the less enriched Site 527 and Site 528 basalts and one formed by the Site 525A basalts. The two trends have the EMI endmember in common. The less depleted end of the Site 527-Site 528 basalts is FOZO-like and can be explained by the addition of a recycled component (basaltic oceanic crust plus sediment). This recycled component was altered during subduction. The sense and magnitude of the chemical fractionation resulting from the subduction alteration are in agreement with dehydration experiments on basalts and sediment. Compared to other EMI like basalts the Walvis Ridge basalts have flatter REE patterns and show less fractionation between large ion lithophile and heavy REE elements. Using the isotopic compositions as constrains for the parent-daughter ratios we were able to model the trace element patterns of the basalts as melting between 5 and 10% for Site 525A and between 10 and 15% for the depleted end of the Site 528-Site 527 array. In all cases a significant portion of melting takes place in the garnet stability field.
Resumo:
Legs 127 and 128 of the Ocean Drilling Program cored basement samples from two sites in the Yamato Basin (Sites 794 and 797) and one site in the Japan Basin (Site 795) of the Japan Sea. These samples represent sills and lava flows erupted or shallowly intruded in a marine environment during backarc extension and spreading in the middle Miocene. In this paper, we describe the geochemical characteristics of these igneous units using 52 new instrumental neutron activation analyses (INAA), 8 new X-ray fluorescence (XRF) analyses, and previous shipboard XRF analyses. The sills intruded into soft sediment at Sites 794 and 797 were subject to extensive hydrothermal activity, estimated at <230° C under subgreenschist facies conditions, which heavily to totally altered the fine-grained unit margins and moderately to heavily altered the coarse-grained unit interiors. Diagenesis further altered the composition of these igneous bodies and lava flows at Sites 794, 795, and 797, most intensely at unit margins. Our study of two well-sampled units shows that Mg, Ca, Sr, and the large-ion lithophile elements (LILE) mobilized during alteration, and that the concentrations of Y, Yb, and Lu decreased and Ce increased in the most severely altered samples. Nevertheless, our study shows that the rare-earth elements (REE) were relatively immobile in the majority of the samples, even where secondary mixed-layer clays comprised the great majority of the rock. Fresher Yamato Basin samples are compositionally heterogenous tholeiitic basalts and dolerites. At Site 794 in the north-central portion of the basin, Units 1 to 5 (upper basement) comprise mildly light rare-earth element (LREE) enriched basalts and dolerites (chondrite-normalized La/Sm of 1.4-1.8), while the stratigraphically lower Units 6 to 9 are less enriched dolerites with (La/Sm)N of 0.7-1.3. All Site 794 samples lack Nb and Ta depletions and LILE enrichments, lacking a strong subduction-related incompatible element geochemical signature. At Site 797 in the western margin of the basin, two stratigraphically-definable unit groups also occur. The upper nine units are incompatible-element depleted tholeiitic sills and flows with strong depletions of Nb and Ta relative to normal mid-ocean ridge basalt (N-MORB). The lower twelve sills represent LREE-enriched tholeiites (normalized La/Sm ranges from 1.1 to 1.8), with distinctly higher LILE and high field-strength element (HFSE) contents. At Site 795 at the northern margin of the Japan Sea, three eruptive units consist of basaltic andesite to calc-alkaline basalt (normalized La/Sm of 1.1 to 1.5) containing moderate depletions of the HFSE relative to N-MORB. The LILE-depleted nature of these samples precludes their origin in a continental arc, indicating that they more likely erupted within a rifting oceanic arc system. The heterogenous nature of the Japan Sea rocks indicate that they were derived at each site from multiple parental magmas generated from a compositionally heterogenous mantle source. Their chemistry is intermediate in character between arc basalts, MORB, and intraplate basalts, and implies little involvement of continental crust at any point in their genesis. Their flat chondrite-normalized, medium-to-heavy rare earth patterns indicate that the primary magmas which produced them last equilibrated with and segregated from spinel lherzolite at shallow depths (<30 kbar). In strong contrast to their isotopic compositional arrays, subduction-related geochemical signatures are usually poorly defined. No basin-wide temporal or geographic systematics of rock chemistry may be confidently detailed; instead, the data show both intimate (site-specific) and widespread backarc mantle heterogeneity over a narrow (2 Ma or so) range in time, with mantle heterogeneity most closely resembling a "plum-pudding" model.
Resumo:
Ferruginate shells and tubular worm burrows from the oxygenated zone of the Black Sea (Kalamit Bay and Danube River mouth) are studied by transmission and scanning electron microscopy combined with analyses of elemental composition. Iron and manganese oxyhydroxide nodules considered here are enriched in phosphorus. They contain variable amounts of terrigenous and biogenic material derived from host sediments. Oxyhydroxides are mainly characterized by colloform structure, whereas globular and crystalline structures are less common. The dominating iron phase is represented by ferroxyhite and protoferroxyhite, whereas the manganese phase is composed of Fe-free vernadite. Concentrations of Mn, As, and Mo are 12-18 times higher relative to sediments, while concentrations of Fe, P, Ni, and Co increase 5-7 times during nodule formation.
Resumo:
The northwest trending walls of the Pito Deep Rift (PDR), a tectonic window in the southeast Pacific, expose in situ oceanic crust generated ?3 Ma at the superfast spreading southern East Pacific Rise (SEPR). Whole rock analyses were performed on over 200 samples of dikes and lavas recovered from two ~8 km**2 study areas. Most of the PDR samples are incompatible-element-depleted normal mid-ocean ridge basalts (NMORB; (La/Sm)N < 1.0) that show typical tholeiitic fractionation trends. Correlated variations in Pb isotope ratios, rare earth element patterns, and ratios of incompatible elements (e.g., (Ce/Yb)N) are best explained by mixing curves between two enriched and one depleted mantle sources. Pb isotope compositions of most PDR NMORB are offset from SEPR data toward higher values of 207Pb/204Pb, suggesting that an enriched component of the mantle was present in this region in the past ?3 Ma but is not evident today. Overall, the PDR crust is highly variable in composition over long and short spatial scales, demonstrating that chemically distinct lavas and dikes can be emplaced within the same segment over short timescales. However, the limited spatial distribution of high 206Pb/204Pb samples and the occurrence of relatively homogeneous MgO compositions (ranging <2.5 wt %) within a few of the individual dive transects (over distances of ~1 km) suggests that the mantle source composition evolved and magmatic temperatures persisted over timescales of tens of thousands of years. The high degree of chemical variability between pairs of adjacent dikes is interpreted as evidence for along-axis transport of magma from chemically distinct portions of the melt lens. Our findings suggest that lateral dike propagation occurs to a significant degree at superfast spreading centers.
Resumo:
The phase relations of natural volcaniclastic sediments from the west Pacific Ocean were investigated experimentally at conditions of 3-6 GPa and 800-900 °C with 10 wt.% added H2O (in addition to ~ 10 wt.% structurally-bound H2O) to induce hydrous melting. Volcaniclastic sediments are shown to produce a sub-solidus assemblage of garnet, clinopyroxene, biotite, quartz/coesite and the accessory phases rutile ± Fe-Ti oxide ± apatite ± monazite ± zircon. Hydrous melt appears at temperatures exceeding 800-850 °C, irrespective of pressure. The melt-producing reaction consumes clinopyroxene, biotite and quartz/coesite and produces orthopyroxene. These phase relations differ from those of pelagic clays and K-bearing mid ocean ridge basalts (e.g. altered oceanic crust) that contain phengite, rather than biotite, as a sub-solidus phase. Despite their relatively high melt productivity, the wet solidus for volcaniclastic sediments is found to be higher (825-850 °C) than other marine sediments (700-750 °C) at 3 GPa. This trend is reversed at high-pressure conditions (6 GPa) where the biotite melting reaction occurs at lower temperatures (800-850 °C) than the phengite melting reaction (900-1000 °C). Trace element data was obtained from the 3 GPa run products, showing that partial melts are depleted in heavy rare earth elements (REE) and high field strength elements (HFSE), due to the presence of residual garnet and rutile, and are enriched in large ion lithophile elements (LILE), except for Sr and Ba. This is in contrast to previous experimental studies on pelagic sediments at sub-arc depths, where Sr and Ba are among the most enriched trace elements in glasses. This behavior can be partly attributed to the presence of residual apatite, which also host some light REE in our supra-solidus residues. Our new experimental results account for a wide range of trace element and U-series geochemical features of the sedimentary component of the Mariana arc magmas, including imparting a substantial Nb anomaly to melts from an anomaly-free protolith.
Resumo:
The powerful eruption in the Akademii Nauk caldera on January 2, 1996 marked a new activity phase of the Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo82-72), plagioclase (An92-73), and clinopyroxene (Mg# 83-70) in basalts of the 1996 eruption. The data were used to estimate composition of the parental melt and physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesium, high aluminum basalt (SiO2 = 50.2%, MgO = 5.6%, Al2O3 = 17%) of the mildly potassium type (K2O = 0.56%) and contained much dissolved volatile components (H2O = 2.8%, S = 0.17%, and Cl = 0.11%). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at pressure ~1.5 kbar, proceeded within a narrow temperature range of 1040+/-20°C, and continued until near-surface pressure ~100 bar was reached. Degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under pressure <1 kbar. Magma degassing in an open system resulted in escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. Release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated as 1.7x10**6 t H2O, 1.4x10**5 t S, and 1.5x10**4 t Cl. Concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.
Resumo:
We present a new high resolution speleothem stable isotope record from the Villars Cave (SW-France) that covers part of marine isotope stage (MIS) 3. The Vil14 stalagmite grew between ~52 and 29 ka. The d13C profile is used as a palaeoclimate proxy and clearly shows the interstadial substages 13, 12 and 11. The new results complement and corroborate previously published stalagmite records Vil9 and Vil27 from the same site. The Vil14 stalagmite chronology is based on 12 Th-U dating by MC-ICP-MS and 3 by TIMS. A correction for detrital contamination was done using the 230Th/232Th activity ratio measured on clay collected in Villars Cave. The Vil14 results reveal that the onset of Dansgaard-Oeschger (DO) events 13 and 12 occurred at ~49.8 ka and ~47.8 ka, respectively. Within uncertainties, this is coherent with the latest NorthGRIP time scale (GICC05-60 ka) and with speleothem records from Central Alps. Our data show an abrupt d13C increase at the end of DO events 14 to 12 which coincides with a petrographical discontinuity probably due to a rapid cooling. As observed for Vil9 and Vil27, Vil14 growth significantly slowed down after ~ 42 ka and finally stopped ~ 29 ka ago where the d13C increase suggests a strong climate deterioration that coincides with both North Atlantic sea level and sea surface temperature drop.
Resumo:
Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.