53 resultados para Dry and rainy seasons
Resumo:
Six sensor units each having a pH, dissolved oxygen (DO) and oxidation reduction potential (ORP) sensor, plus a central logger, and connection cables were purchased from RBR (Ottawa). The sensing loggers were placed at a transect across the hot spot. Unfortunately, 5 of the 7 loggers were drowned. Only the central logger, that collected the data from the 6 sensor loggers, and one of the sensor loggers remained dry and functional. The sensor was positioned at 50 m south of the frame, in the center of the hot spot. The ORP did not show interpretable signals. The DO and pH signals showed good correlation (. At the end of October 2009 both signals decreased, the pH became as low as 4, possibly indicating increased seepage, or burial in expelled sediments. In December both sensors regained seawater values and then decreased again until the end of May 2010. A pH of 4 can only be reached by very high carbondioxide levels. The dynamics of the signals indicate eruptions and sediment movements from October 2009 till the end of the deployment.
Resumo:
The pollen record of three marine late Quaternary cores off Senegal shows a juxtaposition of Mediterranean, Northern Saharan, Central Saharan elements, which are considered transported by the trade winds from a winter-rainfall area, and Sahelian, Soudanese, Soudano-Guinean elements, considered transported both by winds and mostly by the Senegal River, and coming from the monsoonal, summer tropical rainfall area of southern West Africa. Littoral vegetation is either the edaphically dry and saline Chenopodiaceae from sebkhas at the time of the main regression, or the warm tropical humid mangrove with Rhizophora during the humid optimum period. Four stratigraphic zones reflect, from basis to top: Zone 4. A semi-arid period with a balanced pollen input. Zone 3. A very arid period with the disappearance of monsoonal pollen, probably from the disappearance of the Senegal River, a very saline littoral plain with Chenopodiaceae, a larger input of northern Saharan pollen from intensified trade winds. Zone 2. A quite humid period, much more so than today, very suddenly established, with a northward extension of the monsoonal areas, a rich littoral mangrove, and weakening of the trade winds. Zone l. A slow and steady evolution toward the present semi-humid conditions with regression of the mangrove, and of the monsoonal areas toward the south. Tentative datations and correlations with the Tchad area suggested: zone 4: 22,500 to 19,000 years BP; zone 3: 19,000 to 12,500 years BP; zone 2: 12,500 to 5,500 years BP; zone 1: 5,500 years BP to top of core. Dinoflagellate cysts display a tropical assemblage with mostly estuarine neritic elements and also a weak oceanic component, mostly in the lower slope core 47. Cosmopolitan taxa dominate the assemblage and only a few species point to more specialized environments. Quantitative variations of the assemblage are the basis of stratigraphy which is not similar to the pollen stratigraphy, and an inshore-outshore gradient has to be taken into account to correlate the three cores.
Resumo:
The Quaternary climate of southern Europe (south Italy and Greece) is investigated by pollen analysis of the sapropels which were deposited in the deep eastern Mediterranean Sea during the last 1 million year (Ma). The time-scale of core KC01b in the Ionian Sea has been established by tuning its oxygen isotopic record to the ice volume model of Imbrie and Imbrie (1980, doi:10.1126/science.207.4434.943). For the last 250,000 year (250 ka), the previous pollen studies and astronomical tuning have been confirmed. Sapropels were deposited under a large range of Mediterranean climates: fully interglacial, fully glacial, and intermediary, as revealed mainly by the balance between the respective pollen abundances of oak (Quercus) and sage-brush (Artemisia). The high value of the oak reveals the warm and wet climate of an Interglacial, and the high value of the sage-brush, the dry and cold climate of a Glacial. Whereas the Mediterranean climate is directly related to the variation of the high-latitude ice sheets, the deposition of sapropels is not so. In contrast with the wide climatic range, sapropels were deposited only when summer insolation in the low latitudes reached its highest peaks. However, between 250 ka and 1 Ma, that stable pattern is not yet established. Only six sapropels are observed, many expected ones do not appear, even as ghosts signalled by peaks of barium abundance, that remain after the post-deposition oxidation of organic matter. The pattern of sapropel formation in stable and direct relationship to highest insolation does not seem to apply. For five of those sapropels, neither climate extremes are observed; they mainly formed during intermediary types of Mediterranean climate. In contrast, one sapropel (and one ghost) relates to a relatively low peak of insolation, and its climate is of a unique, composite type not seen later. This might suggest an unsuspected, more complex pattern linking the formation of Mediterranean sapropels to the astronomical configuration.
Resumo:
In this thesis it is shown that the cosmogenic radionuclide 10Be proved to be a sensitive stratigraphic tool for sediment cores from the Arctic Ocean with low or negligible content of biogenic carbonate, impeding a reliable 0180 stratigraphy. 10Be enables a stratigraphy of Arctic sediments comparable to the d18O stratigraphy Imbrie et al. [1984] in that high concentration of 10Be are related to interglacial stages in contrast to lower values during glacial periods. To use the °Be profile as dating tool it is necessary to investigate the sources and sinks as well as the pathways of this radiotracer. 10Be is produced in the upper atmosphere and transfered to the earth's surface by dry and wet deposition. Besides the atmospheric component there is an important input of 10Be with the rivers to the Arctic Ocean. I determined depositional 10Be fluxes in the shelf area of the Laptev Sea, which is characterized by a huge input of river water, the continental slope of the Laptev Sea, the central Arctic Ocean and the Norwegian- and Greenland Sea. The depositional 10Be fluxes of (20 ± 5) x 10**6 atoms/cm**2/a in the shelf area of the Laptev Sea are by two orders of magnitude higher than the recent atmospheric input (0.2 - 0.5) x 10**6 atoms/cm**2/a in Greenland. while the fluxes in the central Arctic Ocean are in the same range. Further I developed a model to reconstruct the pathways of radionuclides 230Th, 231Pa and 10Be in high northern latitudes. The modelling results were compared with the measured concentrations in the water column and the recent depositional fluxes. These results show that the recent pathways of these nuclides can be rebuild by this model. Thus we can apply this model to earlier oxygen isotope stages to find out which predominate conditions lead to the determined depositional fluxes.
Resumo:
Lake Meerfelder Maar (Germany) provides a varved record from the Last Glacial/Interglacial transition back to ca 1500 years BP. This study shows results for the Holocene sequence from new cores collected in 2009 based on varve counting, microfacies and micro-XRF analyses. The main goal of combining those analyses is to provide a new approach for interpreting long-term palaeolimnological proxy data and testing the climate-proxy stationarity throughout the current interglacial period. Varve counting provides a new independent Holocene chronology (MFM2012) with an estimated counting error of 1-0.5% and supported by 14C dating. Varve structure and thickness and geochemical composition of the varves give information about the main environmental processes that affect the lake and its catchment as well as the possible climate variability behind. Varves are couplets of i) a spring/summer laminae composed of monospecific diatom blooms and ii) an autumn/winter sub-layer made of minerogenic material and re-worked sediments. Thickness of the varves and sub-layers reflect lake variability and allow seasons to be distinguished as well as seasonal proxies. Changes in the winter minerogenic influx into the lake are reflected by Ti intensities and the Si/Ti ratio as a indicator for diatom concentration, which can be used as a proxy for water circulation during the early spring. Long-term variability of geochemical composition shows a reduction of the detrital material input (Ti) at 5,000 varve yrs BP and a visible sensitivity to water mixing (Si/Ti) during the Late Holocene. Variations of Ti intensities during the early and mid-Holocene do not show a clear relationship with climate. In contrast, higher values of the Si/Ti ratio together with thicker varves have been interpreted as wind-stress phases, which coincide with centennial variability of European cold/wet episodes during the Late Holocene. Our findings show that a long-term change in the lake and/or variability of the climate system can influence proxy sensitivity of a lacustrine record.
Resumo:
The Kongtong Mountain area is a marginal area of the Asian summer monsoon and is sensitive to monsoon dynamics. The sensitivity highlights the need to establishing long-term climate records there and evaluating links with the Asian monsoon. Using "signal-free" methods, we developed a tree-ring chronology based 52 ring-width series from 23 Pinus tabulaeformis and Pinus armandidi trees in the Kongtong Mountain, northern China. Tree growth is highly correlated (0.844) with the Palmer Drought Severity Index (PDSI) from May to July, demonstrating the strength of PDSI in modeling drought conditions in this region. We therefore developed a robust May-July PDSI reconstruction spanning 1615-2009, which explained 71.2% of the instrumental variance for the period 1951-2005. Extremely dry epochs are found in periods of 1723-1727 and 1928-1932, and significant wet conditions are seen from 1696-1700, 1753-1757 and 1963-1969. These persistent dry and wet epochs were also found in northeastern Mongolia, suggesting similar drought regimes between these two regions. The dryness that occurred in the 1920s-1930s was the most severe and was concurrent with a warming period. This warming/drying relationship of the 1920s-1930s may be an analog to the current drying trend in northern China.
Resumo:
Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.
Resumo:
The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 µg/m**2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 µg/m**2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 µg/m**3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 ± 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.