663 resultados para Distributed Network Protocol version 3 (DNP3)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the chemical changes in the ocean waters due to the increasing atmospheric CO2 depends on the ability of an organism to control extracellular pH. Among sea urchins, this seems specific to the Euechinoidea, sea urchins except Cidaroidea. However, Cidaroidea survived two ocean acidification periods: the Permian-Trias and the Cretaceous-Tertiary crises. We investigated the response of these two sea urchin groups to reduced seawater pH with the tropical cidaroid Eucidaris tribuloides, the sympatric euechinoid Tripneustes ventricosus and the temperate euechinoid Paracentrotus lividus. Both euechinoid showed a compensation of the coelomic fluid pH due to increased buffer capacity. This was linked to an increased concentration of DIC in the coelomic fluid and thus of bicarbonate ions (most probably originating from the surrounding seawater as isotopic signature of the carbon -delta 13C- was similar). On the other hand, the cidaroid showed no changes within the coelomic fluid. Moreover, the delta 13C of the coelomic fluid did not match that of the seawater and was not significantly different between the urchins from the different treatments. Feeding rate was not affected in any species. While euechinoids are able to regulate their extracellular acid-base balance, many questions are still unanswered on the costs of this capacity. On the contrary, cidaroids do not seem affected by a reduced seawater pH. Further investigations need to be undertaken to cover more species and physiological and metabolic parameters in order to determine if energy trade-offs occur and how this mechanism of compensation is distributed among sea urchins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic Ocean is a bellwether for ocean acidification, yet few direct Arctic studies have been carried out and limited observations exist, especially in winter. We present unique under-ice physicochemical data showing the persistence of a mid water column area of high CO2 and low pH through late winter, Zooplankton data demonstrating that the dominant copepod species are distributed across these different physicochemical conditions, and empirical data demonstrating that these copepods show sensitivity to pCO2 that parallels the range of natural pCO2 they experience through their daily vertical migration behavior. Our data, collected as part of the Catlin Arctic Survey, provide unique insight into the link between environmental variability, behavior, and an organism's physiological tolerance to CO2 in key Arctic biota.