123 resultados para Creative processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentration affects calcification in most planktonic calcifiers. Both reduced or stimulated calcification under high CO2 have been reported in the widespread coccolithophore Emiliania huxleyi. This might affect the response of cells to photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) by altering the thickness of the coccolith layer. Here we show that in the absence of UVR, the calcification rates in E. huxleyi decrease under lowered pH levels (pHNBS of 7.9 and 7.6; pCO2 of 81 and 178 Pa or 804 and 1759 ppmv, respectively) leading to thinned coccolith layers, whereas photosynthetic carbon fixation was slightly enhanced at pH 7.9 but remained unaffected at pH 7.6. Exposure to UVR (UV-A 19.5 W m**-2, UV-B 0.67 W m**-2) in addition to PAR (88.5 W m**-2), however, results in significant inhibition of both photosynthesis and calcification, and these rates are further inhibited with increasing acidification. The combined effects of UVR and seawater acidification resulted in the inhibition of calcification rates by 96% and 99% and that of photosynthesis by 6% and 15%, at pH 7.9 and 7.6, respectively. This differential inhibition of calcification and photosynthesis leads to significant reduction of the ratio of calcification to photosynthesis. Seawater acidification enhanced the transmission of harmful UVR by about 26% through a reduction of the coccolith layer of 31%. Our data indicate that the effect of a high-CO2 and low-pH ocean on E. huxleyi (because of reduced calcification associated with changes in the carbonate system) enhances the detrimental effects of UVR on the main pelagic calcifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentration of CO2 in the atmosphere is projected to reach twice the preindustrial level by the middle of the 21st century. This increase will reduce the concentration of [CO3]2- of the surface ocean by 30% relative to the preindustrial level and will reduce the calcium carbonate saturation state of the surface ocean by an equal percentage. Using the large 2650 m3 coral reef mesocosm at the BIOSPHERE-2 facility near Tucson, Arizona, we investigated the effect of the projected changes in seawater carbonate chemistry on the calcification of coral reef organisms at the community scale. Our experimental design was to obtain a long (3.8 years) time series of the net calcification of the complete system and all relevant physical and chemical variables (temperature, salinity, light, nutrients, Ca2+,pCO2, TCO2, and total alkalinity). Periodic additions of NaHCO3, Na2CO3, and/or CaCl2 were made to change the calcium carbonate saturation state of the water. We found that there were consistent and reproducible changes in the rate of calcification in response to our manipulations of the saturation state. We show that the net community calcification rate responds to manipulations in the concentrations of both Ca2+ and [CO3]2- and that the rate is well described as a linear function of the ion concentration product, [Ca2+]0.69[[CO3]2-]. This suggests that saturation state or a closely related quantity is a primary environmental factor that influences calcification on coral reefs at the ecosystem level. We compare the sensitivity of calcification to short-term (days) and long-term (months to years) changes in saturation state and found that the response was not significantly different. This indicates that coral reef organisms do not seem to be able to acclimate to changing saturation state. The predicted decrease in coral reef calcification between the years 1880 and 2065 A.D. based on our long-term results is 40%. Previous small-scale, short-term organismal studies predicted a calcification reduction of 14-30%. This much longer, community-scale study suggests that the impact on coral reefs may be greater than previously suspected. In the next century coral reefs will be less able to cope with rising sea level and other anthropogenic stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined effects of ocean warming and acidification were compared in larvae from two popula- tions of the cold-eurythermal spider crab Hyas araneus, from one of its southernmost populations (around Helgo- land, southern North Sea, 54°N, habitat temperature 3-18°C; collection: January 2008, hatch: January-February 2008) and from one of its northernmost populations (Svalbard, North Atlantic, 79°N, habitat temperature 0-6°C; collection: July 2008, hatch: February-April 2009). Larvae were exposed to temperatures of 3, 9 and 15°C combined with present-day normocapnic (380 ppm CO2) and projected future CO2 concentrations (710 and 3,000 ppm CO2). Calcium content of whole larvae was measured in freshly hatched Zoea I and after 3, 7 and 14 days during the Megalopa stage. Significant differences between Helgoland and Svalbard Megalopae were observed at all investigated temperatures and CO2 condi- tions. Under 380 ppm CO2, the calcium content increased with rising temperature and age of the larvae. At 3 and 9°C, Helgoland Megalopae accumulated more calcium than Svalbard Megalopae. Elevated CO2 levels, especially 3,000 ppm, caused a reduction in larval calcium contents at 3 and 9°C in both populations. This effect set in early, at 710 ppm CO2 only in Svalbard Megalopae at 9°C. Fur- thermore, at 3 and 9°C Megalopae from Helgoland replenished their calcium content to normocapnic levels and more rapidly than Svalbard Megalopae. However, Svalbard Megalopae displayed higher calcium contents under 3,000 ppm CO2 at 15°C. The findings of a lower capacity for calcium incorporation in crab larvae living at the cold end of their distribution range suggests that they might be more sensitive to ocean acidification than those in temperate regions.